
Efficient Approximation Algorithms for Scheduling Moldable
Tasks

Xiaohu Wua, Patrick Loiseaub

aBeijing University of Posts and Telecommunications, Beijing, China
bInria, FairPlay team, Palaiseau, France

Abstract

Moldable tasks allow schedulers to determine the number of processors assigned
to each task, thus enabling efficient use of large-scale parallel processing systems.
We consider the problem of scheduling independent moldable tasks on processors
and propose a new perspective of the existing speedup models: as the number
p of processors assigned to a task increases, the speedup is linear if p is small
and becomes sublinear after p exceeds a threshold. Based on this, we propose an
efficient approximation algorithm to minimize the makespan. As a by-product, we
also propose an approximation algorithm to maximize the sum of values of tasks
completed by a deadline; this scheduling objective is considered for moldable tasks
for the first time while similar works have been done for other types of parallel
tasks.

Keywords: Scheduling, approximation algorithms, moldable tasks

1. Introduction

Most computations nowadays are done in a parallelized way on large com-
puters containing many processors. Optimizing the use of processors leads to the
problem of scheduling parallel tasks based on their characteristics. In certain cases,
the number of processors assigned to a task is predefined by its owner and is said to
be rigid. However, in many cases, the scheduler can decide this number before the
task execution: if this number cannot be changed during the task execution, the task
is said to be moldable; otherwise, it is said to be malleable1. Moldable tasks are

Email addresses: xiaohu.wu@bupt.edu.cn (Xiaohu Wu),
patrick.loiseau@inria.fr (Patrick Loiseau)

1In the earlier literature, moldable tasks was also called malleable tasks. Now, malleable tasks
refer to another type of parallel tasks (Drozdowski, 2004).

Preprint submitted to European Journal of Operational Research March 29, 2023

easier to implement and manage than malleable tasks; the latter require additional
system support for task migrations and preemptions (Drozdowski, 2004).

1.1. General Problem Description

We consider the problem of scheduling n independent moldable tasks T =
{T1, T2, · · · , Tn} on m identical processors; all tasks are available at time zero.
For every task Tj ∈ T , its execution time tj,1 on one processor is given, as well
as the speedup ηj,p when assigned p ≥ 1 processors, where p is a positive integer.
The execution time of Tj on p processors is tj,p =

tj,1
ηj,p

; then, its workload is
Dj,p = p × tj,p. The task Tj can be represented by a rectangle in the processors
× time space. Like (Mounié et al., 1999, 2007; Jansen & Land, 2018), given a real
number d, we define a parameter γ(j, d) as the minimum number of processors
needed to finish task Tj by time d; if Tj cannot be finished by time d on any
permissible number of processors, we set by convention γ(j, d) = +∞. We often
hope to finish all tasks as soon as possible. Sometimes, a task Tj also has a value
vj that can be obtained if it is finished by a deadline τ ; then we hope to finish by
time τ the most valuable tasks. We will propose algorithms that generate schedules
for different objectives: (i) minimize the makespan, i.e., the maximum completion
time of all tasks of T or (ii) choose a subset of tasks and finish them on the m
processors by a deadline τ to maximize the throughput, i.e., the aggregate value of
tasks finished by time τ . For each task to be executed, a schedule will define the
number of processors assigned to it and the time interval in which it is finished. An
algorithm is a ρ-approximation if

• for our minimization problem, it produces a schedule whose makespan is at
most ρ times the optimal makespan where ρ ≥ 1;

• for our maximization problem, it produces a schedule whose throughput is
at least ρ times the optimal throughput where ρ ≤ 1.

It is always desired to have performance bound ρ closer to one, while keeping
algorithms simple to run efficiently.

1.2. Typical Speedup Models, and Motivation

For moldable tasks, a key aspect that conditions scheduling is the relation be-
tween the task execution time tj,p and the number p of assigned processors. Now,
we introduce three typical speedup models in literature and the most related works,
as well as the main motivation of this paper. In this paper, our main problem is of-
fline scheduling of independent moldable tasks for makespan minimization. While
introducing the related works, if they have any difference with our main problem,

2

Table 1: The Most Relevant Algorithmic Results for the Linear-speedup Model

Optimality or
Approximation Ratio

Remarks

Wang & Cheng (1992) 3− 2
m Dependent

Drozdowski (1996) Exact
Malleable, Polynomial

time solvable

Jain et al. (2012) m−k
m

s−1
s

Malleable, Throughput
maximization

Lucier et al. (2013) 2+O
(

1
(3√s−1)2

) Malleable, Online,
Throughput maximization

Wu & Loiseau (2015)
s−1
s & exact

respectively
Malleable, Throughput

maximization

Guo & Shen (2017)
m−k
m & exact

respectively
Malleable, Throughput

maximization
Benoit et al. (2022a) 2 for failure-prone platforms
Benoit et al. (2022b) 2.62 Dependent, Online

we only clarify their difference with ours; otherwise, they consider the same prob-
lem as our main problem.
Linear-Speedup Model. An ideal speedup model is linear when p does not ex-
ceed a threshold δj (Drozdowski, 2004): tj,p =

tj,1
p where ηj,p = p; the workload

of Tj is independent of p since Dj,p = ptj,p = tj,1. Benoit et al. (2022a) pro-
pose a 2-approximation algorithm, called LPA-LIST, for failure-prone platforms
with additional constraints in the process of executing jobs. We note that LPA-
LIST is applicable to the main problem of this paper by setting the number of job
execution failures in its model to zero. Like ours, the other related works of this
paper are directly for failure-free platforms. When there are precedence constraints
among moldable tasks, Wang & Cheng (1992) propose a

(
3− 2

m

)
-approximation

algorithm while Benoit et al. (2022b) give a 2.62-approximation algorithm in the
online setting. Besides, the case of scheduling independent malleable tasks has
already been studied well, e.g., Drozdowski (1996) gives a polynomial time exact
algorithm with a time complexity of O(n2). Table 1 summarizes the most relevant
works under this model and their differences with our main problem are clarified
in the third column; here, the works whose objectives are throughput maximization
will be introduced in Section 2.2.
Communication Time Model. The communication time model is defined by a

3

Table 2: Algorithmic Results for the Communication Time Model

Approximation Ratio Remarks

Dutton & Mao (2007)
30
13 when m→∞; 2, 9

4 and 20
9

for m = 2, 3 and 4 respectively
Online, cj = c

Havill & Mao (2008)
4− 4

m for even m ≥ 2;
4− 4

m+1 for odd m ≥ 3
Online, cj = c

Guo & Kang (2010) 1+
√
5

2 for m = 2 Online
Kell & Havill (2015) 1.5 for m = 2; 2 for m = 3 Online, cj = c

Benoit et al. (2022a) 3
For failure-prone

platforms
Benoit et al. (2022b) 3.61 Dependent, Online

function:

tj,p =
tj,1
p

+ (p− 1)cj , (1)

where cj is a positive real number; the term (p−1)cj is used to model the commu-
nication overhead among different parts of a task. As more processors are assigned,
the overhead and workload Dj,p increase; if p is too large, tj,p will not decrease
and even increase as p increases, due to the effect of (p− 1)cj . Like Table 1, Table
2 summarizes the related works. Specifically, when all tasks Tj ∈ T have the same
cj = c, Dutton & Mao (2007) give an online algorithm whose approximation ratio
is 2, 9

4 , and 20
9 for m = 2, 3, and 4 respectively, and is 30

13 when m→∞. Havill &
Mao (2008) propose an online algorithm with an approximation ratio 4(m−1)

m for
even m ≥ 2 and 4m

m+1 for odd m ≥ 3. Kell & Havill (2015) improve the work of
(Dutton & Mao, 2007) by giving online algorithms whose approximation ratio are
1.5 and 2 form = 2 and 3. The following works consider the case that each task Tj
has a specific cj . Guo & Kang (2010) give an online algorithm whose approxima-
tion ratio is (1+

√
5)/2 for m = 2, and show that (1+

√
5)/2 is a lower bound on

the approximation ratio of any online algorithm for the problem withm ≥ 2. In the
offline setting, Benoit et al. (2022a) show that LPA-LIST is a 3-approximation for
failure-prone platforms. Benoit et al. (2022b) consider online scheduling of mold-
able tasks with precedence constraints and give a 3.61-approximation algorithm.
Monotonic Model. To date, the best algorithm for our problem is designed by
simply using a general monotonic assumption: tj,p is non-increasing and Dj,p is
non-decreasing in p ∈ [1,m], where ηj,p ≤ p. Fig. 1 illustrates the major algorithm
improvements over the past three decades, where m is independent of n. Specifi-
cally, Belkhale & Banerjee (1990) give a 2

1+1/m -approximation algorithm. Mounié

4

Figure 1: Major Algorithmic Improvements for the Monotonic Model over the Past Three Decades.

et al. (1999, 2007) first propose a (
√
3+ ε)-approximation algorithm and then a

(32 + ε)-approximation algorithm with a complexity O(mn log n
ε) where ε is arbi-

trarily small. Jansen & Land (2018) achieve an improved complexity polynomial in
logm and 1

ε and linear in n, although the algorithm is still a (32+ε)-approximation.
Additionally, in the special case where m ≥ 8nε , they give a FPTAS with a com-
plexity O(n log2m(logm + log 1

ε)). The FPTAS requires a specific relation be-
tween n and m. Wu et al. (2023) give a 3

2 -approximation algorithm without ε and
its time complexity is O(mn log(mn)) for m > n and O(n2 log n) for m ≤ n.
As illustrated in Fig. 1, the three recent algorithmic results all have approximation
ratios of around 1.5, and it is difficult to lower the best known approximation ratio
1.5. In this paper, we aim to sacrifice the generality of the monotonic model for a
better performance guarantee.

In the case where n is independent ofm, we hope to develop a ρ-approximation
algorithm with ρ < 3

2 and will revisit the related speedup models. Under the
monotonic assumption, we have the following bounds of the execution time tj,γ(j,d)
when a task Tj is assigned γ(j, d) processors, which will also hold in this paper:

d ≥ tj,γ(j,d) > d(γ(j, d)− 1)/γ(j, d). (2)

By the definition of γ(j, d), Dj,γ(j,d) is the minimum workload needed to complete
Tj by time d. Suppose that an algorithm produces a schedule of a makespan d. We
observe that it is a 1

θ -approximation to makespan minimization if every task Tj ∈
T has the minimum workload and the aggregate workload processed on them pro-
cessors in [0, d] is≥ θmdwhere θ is a lower bound of the processor utilization. Our
objective is to make θ large (e.g., θ > 2

3). For each task Tj with large γ(j, d) (e.g.,

5

γ(j, d) ≥ 4), we have by Inequality (2) that executing it on γ(j, d) processors alone
can make these processors achieve a high utilization in [0, d]. One main challenge
comes from tasks with smaller γ(j, d). Then, a more precise speedup description
than monotonicity could help, which is fortunately available in literature; it allows
quantitatively characterizing the execution time reduction while keeping the work-
load constant, when the number p of processors assigned to a task Tj changes from
γ(j, d) to a larger value. We can thus obtain some desired properties and design a
schedule under which the m processors achieve a high overall utilization in [0, d]
under some additional constraints (see Section 3).
The Proposed Speedup Model. While the linear-speedup model is studied, (Droz-
dowski, 1996) points out that it is typical of parallel applications that the speedup
is linear when p is within a relatively small δj ; assigning more than δj processors
to execute Tj becomes less efficient. This model sets the parallelism bound of Tj
to be δj , although it may be worth exploring the opportunity of assigning more
processors to each task Tj to get better resource efficiency. Complementarily, the
function (1) of the communication time model is also tested on widely used NAS
parallel benchmarks and HPLinpack, which embody various computations with
typical communication patterns for evaluating the performance of parallel systems
(John & Eeckhout, 2018); here, an instance of a type of computation represents a
task. The benchmarking results of Dutton et al. (2008) show that the function (1)
can well approximate the execution times of tasks and also indicate that the fac-
tor cj is far smaller than tj,1: when p is small (up to a threshold δj), the effect of
(p−1)cj on tj,p is negligible compared with the term tj,1

p and the speedup coincides
accurately with the linear-speedup model (Drozdowski, 1996); assigning more than
δj processors to execute Tj becomes less efficient: its execution time still decreases
as p increases but its workload starts to increase, similarly to monotonic tasks; fi-
nally, there may be a larger threshold kj such that when p > kj , its execution time
does not decrease any longer and even increases as p increases, since parallelizing
on too many processors incurs an unacceptable overhead. Thus, we associate every
task Tj with two thresholds δj and kj to distinguish the speedup modes of Tj when
p is in different ranges where δj ≤ kj ; then, we make the following definition on
which we will base the algorithmic design of this paper.

Definition 1. A task Tj ∈ T is (δj , kj)-monotonic if it is moldable and satisfies

1. When p ∈ [1, δj], its workload remains constant and the speedup is linear,
i.e., Dj,1 = Dj,p = p× tj,p;

2. If δj < kj , its workload is increasing and its execution time is decreasing in
p ∈ [δj , kj], i.e., Dj,p < Dj,p+1 and tj,p > tj,p+1 for p ∈ [δj , kj − 1].

3. The parameter kj is a parallelism bound, i.e., the maximum number of pro-
cessors allowed to be assigned to Tj .

6

Figure 2: Relations Between Different Speedup Models

In Definition 1, the second point implies that assigning more than δj for exe-
cuting Tj is less efficient but its execution time is decreasing in p ∈ [δj , kj]. The
third point is used to reflect that when p > kj , the workload begins to increase to
an unacceptable extent such that the execution time does not decrease any more
(i.e., ηj,kj ≥ ηj,p); then, assigning more than kj processors to Tj cannot bring
any benefit. Overall, when p ∈ [1, kj], tj,p is non-increasing in p while Dj,p is
non-decreasing in p.
Relations with the Monotonic and Linear-Speedup Models. For each task Tj ∈
T , the speedup model defines the way that tj,p and Dj,p change with the number
p of allocated processors, where tj,1 is known and Dj,p = p × tj,p. We con-
sider the problem of offline scheduling of independent moldable tasks on iden-
tical machines, and the objective is either makespan minimization or throughput
maximization. By Definition 1, a task whose speedup is linear is also a (δj , kj)-
monotonic task when kj = δj . Thus, the linear-speedup model is a special case
of the (δj , kj)-monotonic model; thus, for a given objective, any ρ-approximation
algorithm for the problem under the (δj , kj)-monotonic model of this paper is also
a ρ-approximation algorithm for the problem under the linear-speedup model, as
illustrated in Fig. 2. A problem A is S-reducible to a problem B if any instance of
A can be transformed into an instance of B with the same optimal objective func-
tion value, and any solution forB can be transformed into a solution forA with the
same objective function value (Crescenzi et al., 2016). There exists a S-reduction
from the problem under the (δj , kj)-monotonic model to the problem under the
monotonic model, which is proved in Appendix A, and thus any ρ-approximation
algorithm for the monotonic model can be transformed into a ρ-approximation al-
gorithm for the (δj , kj)-monotonic model.

Algorithms for scheduling problems with a more general speedup model have
more extensive applicability, as illustrated in Fig. 2. However, algorithms under
specific models are still important since they may be designed more finely to have
better approximation ratios. For example, for online scheduling of moldable task

7

graphs to minimize the makespan, (Benoit et al., 2022b) give a 2.62-approximation
algorithm for the linear-speedup model and a 3.61-approximation algorithm for the
communication time model; they also generalize these speedup models and give a
5.72-approximation algorithm under the generalized model.

1.3. Algorithmic Results
Consider a set T in which each task Tj is (δj , kj)-monotonic. Given a task Tj ,

its parameters δj and kj are fixed; as reported in (Dutton et al., 2008), δj and kj
typically range in [25, 150] and [250, 512], depending on the types of computation
embodied in the tasks of T . We denote by δ the minimum linear-speedup threshold
of all tasks and by k the maximum parallelism bound of all tasks, i.e.,

δ = minTj∈T {δj} and k = maxTj∈T {kj}. (3)

The numberm of processors is large since our problem arises in large-scale parallel
systems such as supercomputers and cloud computing clusters (Jain et al., 2012;
Aridor et al., 2005), e.g., supercomputers can have m = 216 processors inside
(Aridor et al., 2005). Like (Jain et al., 2012), we assume in this paper that m is
much larger than the maximum parallelism bound of tasks, i.e., m� k.

Let u =
⌈

2
√
δ
⌉
− 1, that is, u is the unique integer such that δ ∈ [u2 + 1, (u+

1)2]. Let tm denote the maximum execution time of tasks when they are executed
on one processor, i.e., tm = maxTj∈T {tj,1}. In this paper, for any δ ≥ 5, the
main algorithmic result is a 1

θ(δ)(1 + ε)-approximation algorithm for makespan
minimization with a complexity O(n logm log (nmtm/ε)) where

θ(δ) =
u+ 1

u+ 2

(
1− k

m

)
.

The algorithm achieves an approximation ratio θ(δ) close to u+2
u+1 since m �

k. Typically, the minimum linear-speedup threshold δ has an effective range of
[25, 150] (Dutton et al., 2008). In the worst case that δ = 25, θ(δ) is close to 6

5 ;
when δ = 150, u+2

u+1 = 14
13 ≈ 1.077, which is close to 1. The larger the threshold δ,

the better the proposed algorithm. Under mild assumptions, we realize our goal to
sacrifice the generality of the monotonic model for a better approximation ratio.

For throughput maximization with a given deadline τ , we assume that every
task Tj ∈ T can be finished by time τ , i.e., γ(j, τ) ∈ [1, kj]. As a by-product,
another algorithmic result of this paper is a θ(δ)-approximation algorithm with a
complexityO(n2 logm) to maximize the throughput with a deadline τ . To the best
of our knowledge, we are the first to address this scheduling objective for moldable
tasks, while this objective has been addressed for other types of parallel tasks in
the literature of scheduling theory (Jansen & Zhang, 2007; Fishkin et al., 2005).

8

The rest of this paper is organized as follows. In Section 2, we give more related
works. In Section 3, we give an overview of the ideas developed in this paper. The
following two sections are used to elaborate these ideas. In particular, in Section 4,
we propose a scheduling algorithm Sched that produces a schedule with several
features described in Section 3. In Section 5, we show the application of Sched
to the objectives of makespan minimization and throughput maximization with a
deadline respectively. Finally, we conclude this paper in Section 6.

2. Related Work

2.1. Makespan Minimization
The problem of scheduling moldable tasks to minimize the makespan is strongly

NP-hard when m ≥ 5 (Drozdowski, 2004). There is a long history of study with
continuous improvements to the approximation ratio or time complexity. Turek
et al. (1992) consider moldable tasks without monotonicity and propose a two-
phases approach: (i) determine the number of processors assigned to each task
and (ii) solve the resulting strip packing problem; the latter has well been studied,
e.g., we can directly use the 2-approximation algorithm of Steinberg (Steinberg,
1997). Further, the authors show that any λ-approximation algorithm of a com-
plexity O(f(m,n)) for strip packing can be transformed into a λ-approximation
algorithm of a complexity O(mnf(m,n)) for our problem. In the special case of
monotonic tasks, Ludwig & Tiwari (1994) improve the transformation complexity
toO(n log2m+ f(m,n)). Jansen & Porkolab (2002) formulate the original prob-
lem as a linear program. They propose a polynomial time approximation scheme
(PTAS) when the number m of processors is constant; here, the complexity is
exponential in m. Further, Jansen & Thöle (2010) propose a PTAS when m is
polynomially bounded in the number n of tasks. In the case of an arbitrary number
of processors, Jansen (2012) also propose a polynomial time (32+ε)-approximation
algorithm for any fixed ε. Barketau et al. (2014) give an optimal enumerative al-
gorithm whose time complexity is O(n32(2n+m−2)n). In the special case of n
identical tasks, Decker et al. (2006) give a 5

4 -approximation algorithm.
As introduced in Section 1, of the great relevance to our work are (Mounié

et al., 1999, 2007; Jansen & Land, 2018) that use similar techniques for monotonic
tasks. For example, Mounié et al. (2007) apply the dual approximation technique
(Hochbaum & Shmoys, 1987): it takes a real number d as an input, and either
outputs a schedule of a makespan ≤ 3

2d or answers correctly that d is a lower
bound of the optimal makespan. To realize this, tasks are mainly classified into
two subsets T1 and T2 whose tasks are respectively assigned γ(j, d) and γ(j, d2)
processors; the classification aims at minimizing the total workload W of T1 and
T2 while guaranteeing that the total number of processors assigned to T1 is ≤ m,

9

which is formulated as a knapsack problem. If the optimal W exceeds the pro-
cessing capacity of the m processors, there exists no schedule with a makespan
< d. Otherwise, the total number of processors assigned to T2 may exceed m and
a series of reductions to the numbers of processors assigned to the tasks of T1 and
T2 is taken to get a feasible schedule: the tasks are assigned to different parts of
processors respectively in the time intervals [0, 32d], [0, d] and [d, 32d].

Finally, our problem has also been studied well when the speedup ηj,p is a
concave or convex function of p (Blazewicz et al., 2004, 2006; Barketau et al.,
2014; Ebrahimi et al., 2018), which is less relevant to the speedup model of this
paper. We don’t introduce them in this paper any more.

2.2. Throughput Maximization
Several works have considered scheduling other types of parallel tasks to max-

imize the throughput. Jansen & Zhang (2007) and Fishkin et al. (2005) consider
scheduling rigid tasks with a common deadline, e.g., the former apply the theory
of knapsack problem and linear programming to propose an (12 + ε)-approximation
algorithm. Jain et al. (2012) consider malleable tasks with individual deadlines.
Each task has a linear speedup within a parallelism bound, and there is a parameter
s used to characterize the minimum delay-tolerance of all tasks: each Tj has to be
finished in a time window [aj , dj]; it has the minimum execution time lenj when
assigned δj processors; s is the minimum ratio of dj − aj to lenj among all tasks.
For offline scheduling, Jain et al. (2012) propose a greedy m−k

m
s−1
s -approximation

algorithm where k is the maximum parallelism bound of all tasks. Wu & Loiseau
(2015) prove that the best approximation ratio that the type of greedy algorithms
of (Jain et al., 2012) can achieve is s−1

s and propose such an algorithm with a
time complexity of O(n2); they also show a sufficient and necessary condition
under which a set of malleable tasks with deadlines can feasibly be scheduled on
a fixed number of processors and propose an exact algorithm by dynamic pro-
gramming that has a time complexity of O

(
max{n2, n(mT)T }

)
, where T is the

maximum deadline of tasks. Guo & Shen (2017) give a m−k
m -approximation algo-

rithm with a time complexity of O(n2 + nT) and also an exact algorithm with a
time complexity of O

(
n(mT)T

)
. For online scheduling, Lucier et al. (2013) pro-

pose a 2+O
(
1/(3
√
s− 1)2

)
-approximation algorithm. In cloud computing clus-

ters, many applications are delay-tolerant where s � 1 and m � k. Thus, their
algorithms achieve good approximation ratios in practical settings.

3. Overview of the Approaches

Central to our algorithm design is an algorithm Sched that aims to schedule a
set T of tasks on the m processors in a time interval [0, d] and achieves a processor

10

utilization ≥ θ(δ) on the conditions that (i) each scheduled task Tj has a workload
Dj,γ(j,d), which is the minimum workload to finish Tj by time d, and (ii) there
exists some task of T rejected to be scheduled due to the insufficiency of idle
processors (see Section 4). We establish the connection of Sched with our two
problems in the following ways.

For makespan minimization, we need to schedule all tasks of T , while Sched
can play a role only when a part of tasks are scheduled. We apply a binary search
procedure to find two parameters U and L such that Sched can schedule all tasks
by time U but only a part of tasks by time L, with the relation U ≤ L(1 + ε) (see
Section 5.1). Let d∗ denote the optimal makespan. We can establish the relation
between U and d∗ via L and prove U/d∗ ≤ 1

θ(δ)(1 + ε), thus showing that the
resulting algorithm is a 1

θ(δ)(1 + ε)-approximation. Specifically, in the case that
d∗ ∈ [L,U], we have U/d∗ ≤ (1 + ε)/θ(δ) trivially. In the case that d∗ < L, we
have that the total workload of all tasks of T in an optimal schedule is ≤ md∗ but
≥ the total workload processed when Sched manages to schedule a part of tasks
of T by time L. Thus, we have md∗ ≥ mθ(δ)L ≥ mθ(δ)U/(1 + ε) and U ≤
d∗(1 + ε)/θ(δ).

For throughput maximization, vj/Dj,γ(j,d) is the maximum possible value ob-
tained from processing a unit of workload of Tj , called its value density. Let us
accept the maximum number of tasks in the non-increasing order of their value
densities until Sched cannot produce a feasible schedule by time τ ; then, the fea-
ture of Sched leads to that the utilization θ(δ) will be the approximation ratio of
the resulting algorithm (see Section 5.2).

Finally, the design of Sched relies on the properties of the speedup model in
Definition 1 to classify the tasks of T . The threshold δ in Equation (3) is a fixed
parameter and we have the following property by Definition 1.

Property 3.1. If a task Tj is (δj , kj)-monotonic, we have that (i) the workloadDj,p

is non-decreasing and the execution time tj,p is non-increasing in the number p of
assigned processors when p ∈ [1, kj] and (ii) the speedup is linear when p ∈ [1, δ],
i.e., tj,p =

tj,1
p .

For a task Tj ∈ T , its execution time on p processors is defined by tj,1 and
ηj,p. Given the time d, γ(j, d) = min{p ∈ [1, kj] | tj,p ≤ d} is a fixed parameter
and can be found by binary search (Jansen & Land, 2018). The classification of
tasks for the scheduling process mainly uses three integer variables ν, H and δ′

and is based on the values of γ(j, d), tj,γ(j,d) and tj,δ′ ; it attempts to guarantee
that the aggregate execution time is in [rd, d] when some tasks in the same class
are executed on a group of γ(j, d) or δ′ processors. Specifically, ν and H are
for distinguishing tasks with different γ(j, d): a task Tj is said to have a large,

11

medium, or small γ(j, d) if γ(j, d) is ≥ H , in [ν, H − 1], or ≤ ν − 1 respectively,
where ν < H . Let r = H−1

H and we will use rd and (1 − r)d to distinguish tasks
with different execution times. The first class of tasks, denoted by A′, includes
every task that has a large execution time ≥ rd when assigned a group of γ(j, d)
processors (see Equation (6)), e.g., every task with large γ(j, d) has such a feature
by Inequality (2).

For the remaining tasks with medium or small γ(j, d), we will maintain sev-
eral relations among ν, H , δ′ and δ. For example, by letting H − 1 ≤ δ′ ≤ δ, the
speedup is linear and the workload keeps constant when the number p of assigned
processors ranges in [γ(j, d), δ′]. These relations finally enable the following prop-
erties:

• For the tasks with small γ(j, d) whose execution times are < rd when as-
signed γ(j, d) processors, they are denoted by Bν−1 and their execution
times will decrease remarkably (by a factor at least δ′

ν−1) to a small value
< (1 − r)d when assigned δ′ processors (see Equation (7) and Lemma 3).
Executing as many such tasks as possible on a group of δ′ processors in [0, d]
will lead to an aggregate execution time ≥ rd.

• Let h be an integer in [ν,H − 1]. For the tasks with γ(j, d) = h whose
execution times are ≥ (1− r)d when assigned δ′ processors and < rd when
assigned h processors, they are denoted by Ah and there exists a positive
integer xh such that the aggregate execution time is in [rd, d] when xh such
tasks are executed one by one on a group of δ′ processors (see Equation (11)
and Proposition 5).

Finally, each group of γ(j, d) or δ′ assigned processors described above can achieve
a utilization ≥ r in [0, d]. The overall utilization θ(δ) of the m processors is close
to r and can be derived when some task is rejected due to the insufficiency of pro-
cessors, with at most k − 1 processors idle. The task classification and maintained
relations are formally described in Section 4.1, with other related issues solved.
The scheduling algorithm Sched is given in Section 4.2.

4. The Algorithm Sched

In this section, we consider the case that every task Tj ∈ T can be finished by
time d, i.e., γ(j, d) ∈ [1, kj].

Lemma 2. For every (δj , kj)-monotonic task Tj ∈ T , Inequality (2) holds.

Proof. We have tj,γ(j,d) ≤ d and tj,γ(j,d)−1 > d by the definition of γ(j, d). By
Property 3.1, Dj,γ(j,d) ≥ Dj,γ(j,d)−1. Further, we have γ(j, d)tj,γ(j,d) ≥ (γ(j, d)−
1)tj,γ(j,d)−1 > (γ(j, d)− 1)d. Hence, Inequality (2) holds.

12

4.1. Task Classification
Following the high-level ideas in Section 3, we now begin to elaborate the task

classification. For ease of reference, we first summarize the maintained relations
between the fixed parameter δ, the integer variables H , ν, δ′, xν , · · · , xH−1, and
the number r = H−1

H where the meanings of these variables and the number r will
be clarified later:

1 ≤ ν ≤ H − 1 ≤ δ′ ≤ δ (4a)
rν

δ′
≥ 1− r (4b)

r(ν − 1)

δ′
< 1− r (4c)

and for all h ∈ [ν,H − 1]

r
h

δ′
xh ≤ 1, (5a)

max

{
1− r, h− 1

δ′

}
xh ≥ r. (5b)

As we classify tasks and prove their properties, we can gradually perceive the un-
derlying reasons why these relations are established to get the desired properties.
At the end of this subsection, we will give a feasible solution of H , ν, δ′, xν , · · · ,
xH−1 that satisfy the relations (4a)-(5b).

Fig. 3 summarizes how to classify a task Tj ∈ T according to its value of
γ(j, d) and its execution time on γ(j, d) or δ′ processors. Specifically, the first
class of tasks contains all tasks whose execution times tj,γ(j,d) are ≥ rd when
assigned γ(j, d) processors and is defined as

A′ = {Tj ∈ T |γ(j, d) ≥ H}
∪
{
Tj ∈ T |γ(j, d) ∈ [1, H − 1], tj,γ(j,d) ≥ rd

} (6)

A′ also includes a part of tasks with smaller γ(j, d) but they have tj,γ(j,d) ≥ rd.
Except A′, the remaining tasks have medium or small γ(j, d) and each has an
execution time tj,γ(j,d) < rd. Among these tasks, let Bν−1 denote all tasks with
γ(j, d) ≤ ν − 1, i.e.,

Bν−1 = {Tj ∈ T | γ(j, d) ≤ ν − 1, tj,γ(j,d) < rd}; (7)

let BH−1 denote all tasks that satisfy γ(j, d) ∈ [ν,H − 1] and tj,δ′ < (1− r)d, i.e.,

BH−1 = {Tj ∈ T |γ(j, d) ∈ [ν,H − 1], tj,δ′ < (1− r)d, tj,γ(j,d) < rd}. (8)

13

Figure 3: Task Classification.

The second class of tasks is defined as

A′′ = Bν−1 ∪ BH−1. (9)

For each task Tj with γ(j, d) ≤ H − 1, the relation (4a) ensures by Property 3.1
that the speedup is linear when the number of processors assigned to Tj changes
from γ(j, d) to δ′; when assigned δ′ processors, its execution time tj,δ′ satisfies

tj,δ′ = tj,γ(j,d)
γ(j, d)

δ′
. (10)

Lemma 3. For each task Tj ∈ Bν−1, we have tj,δ′ < (1− r)d.

Proof. The execution time of Tj satisfies

tj,δ′
(a)
= tj,γ(j,d)

γ(j, d)

δ′
(b)
<
ν − 1

δ′
rd

(c)
< (1− r)d

where the above (a), (b) and (c) are due to Equation (10), Equation (7) and the
relation (4c) respectively.

Proposition 4. For every task Tj ∈ A′′, we have tj,δ′ < (1− r)d.

14

Proof. It follows from Lemma 3 and the definition of BH−1 in Equation (8).

Finally, the remaining are all tasks with γ(j, d) ∈ [ν,H − 1] and each has an
execution time tj,γ(j,d) < rd when assigned γ(j, d) processors and tj,δ′ ≥ (1−r)d
when assigned δ′ processors. For each h ∈ [ν,H − 1], a single class of tasksAh is
defined to contain all such tasks with γ(j, d) = h, i.e.,

Ah = {Tj ∈ T |γ(j, d) = h, tj,h < rd, tj,δ′ ≥ (1− r)d}. (11)

Proposition 5. When a task is assigned δ′ processors, we have that

(i) for every task Tj ∈ Ah, its execution time tj,δ′ is < lhd where lh = h
δ′ r;

(ii) the aggregate execution time of any xh tasks of Ah is in [rd, d].

Proof. The relation (4b) implies that ν is the maximum possible integer such that
the relation (4c) can hold. Let us consider every task Tj ∈ Ah and by the definition
of Ah in Equation (11), we have

tj,γ(j,d) < rd (12)

tj,δ′ ≥ (1− r)d. (13)

where γ(j, d) = h. We have by Lemma 2 that the execution time of this task Tj
satisfies

tj,γ(j,d) >
h− 1

h
d. (14)

Thus, by Equation (10), we have

tj,δ′ = tj,h
h

δ′
(d)
<

h

δ′
rd (15)

tj,δ′ = tj,h
h

δ′
(e)
>

(h− 1)d

h

h

δ′
=
h− 1

δ′
d (16)

where the above (d) is due to Inequality (12), and (e) is due to Inequality (14). By
Inequalities (13), (15) and (16), we have for any task Tj ∈ Ah that

tj,δ′ ∈
[
max

{
1− r, h− 1

δ′

}
d,

h

δ′
rd

]
.

While executing any xh tasks of Ah one by one on δ′ processors, the relations
(5a) and (5b) ensure that their aggregate execution time is in [rd, d]. Together with
Inequality (15), Proposition 5 thus holds.

15

Proposition 4 and 5 enable us to design good schedules. Executing as many
tasks from A′′ as possible on δ′ processors by time d can lead to that these proces-
sors have a utilization ≥ r in [0, d]. This also holds for the tasks of Ah where h ∈
[ν,H − 1] since at least xh tasks can be finished by time d.

Proposition 6. For a given linear-speedup threshold δ ≥ 5, let u =
⌈

2
√
δ
⌉
− 1

where u ≥ 2 and δ ∈ [u2 + 1, (u + 1)2]. A feasible solution that satisfies the
relations (4a)-(5b) is as follows:

H = u+ 2

δ′ = u2 + 1

ν = u

xh = 2u+ 1− h for all h ∈ {ν,H − 1}

(17)

where r = u+1
u+2 .

Proof. The proof is about verifying that the setting in Equation (17) can satisfy the
relations (4a)-(5b) and its detail can be found in Appendix B.

In the rest of this paper, we will set the parameter values in the way described
in Proposition 6. Since ν = u and H = u+ 2, the tasks of T are finally classified
as A′,Au+1,Au,A′′. Finally, we show the time complexity while classifying the
tasks of T . When a task Tj is allocated p ∈ [1,m] machines, the speedup ηj,p
can be accessed via some oracle in constant time (Jansen & Land, 2018), e.g., the
oracle can obtain such information by benchmarking studies (Dutton et al., 2008).
Theoretically, the value of kj or δj is a fixed integer in [1,m] and can be obtained
by binary search, leading to the proposition below.

Proposition 7. For each task Tj ∈ T , the time complexity of finding the value of
kj or δj is O(logm).

Proposition 8. Given the value of d and the values of kj and δj of each task
Tj ∈ T , the time complexity of task classification is O(n logm).

Proof. The time complexity of finding the value of δ = minTj∈T {δj} in Equation
(3) isO(n). We can directly compute the value of δ′ by Equation (17). Afterwards,
we classify each task Tj where we need to check the value of γ(j, d), tj,γ(j,d), or
tj,δ′ at most four times, as illustrated in Fig. 3; the time complexities of find these
values determine the time complexity of classifying a task. Given the execution
time tj,1 on one processor, γ(j, d) = min{p ∈ [1, kj] | tj,p ≤ d} can be found
by binary search with a time complexity of O(log kj)≤ O(logm), where kj ≤ m.
Given the values of γ(j, d) and δ′, tj,γ(j,d) and tj,δ′ can directly be computed in time
O(1). Thus, the time complexity of classifying the n tasks is O(n logm).

16

4.2. Algorithm Description

Now, we give the scheduling algorithm Sched, which is presented in Algo-
rithm 1. Let m′ denote the number of idle processors; initially, m′ = m. T is
partitioned into A′, Au+1,Au, A′′, and these sets are also sorted and assigned in
this order where the tasks in the same set are chosen in an arbitrary order. Follow-
ing this order, Sched assigns tasks in the following way until all tasks of T are
assigned or there are not enough idle processors:

Algorithm 1: Sched(d)

1 Set the parameters by Proposition 6 and classify the tasks of T
2 m′ ← m, (X ′,Xu+1,Xu,Xu−1)← (A′,Au+1,Au,A′′)

// X ′,Xu+1,Xu,Xu−1: the currently unassigned tasks

3 while X ′ 6= ∅ and k ≤ m′ do
4 Get an arbitrary task Tj off X ′: X ′ ← X ′ − {Tj}
5 Assign Tj onto γ(j, d) idle processors: m′ ← m′ − γ(j, d)
6 if X ′ 6= ∅ and m′ < k, then exit
7 if

⋃u+1
l′=u−1Xl′ 6= ∅, then let l be the maximum integer in {u− 1, u, u+1}

with Xl 6= ∅
8 while

⋃u+1
l′=u−1Xl′ 6= ∅ and δ′ ≤ m′ do

9 Get δ′ idle processors: m′ ← m′ − δ′
10 Tδ′ ← ∅, t← 0 // Tδ′: the tasks currently chosen for the

δ′ processors; t: the aggregate execution time of Tδ′
11 while Xl 6= ∅ do
12 Get an arbitrary task Tj from Xl
13 if t+ tj,δ′ ≤ d then
14 t← t+ tj,δ′ , Tδ′ ← Tδ′ ∪ {Tj}, Xl ← Xl − {Tj}
15 else
16 break // got enough tasks and go to line 22

17 if Xl = ∅ and l > u− 1 then
// begin to assign the tasks of Xl−1, · · ·, Xu−1

18 if there is an integer l̂ ∈ [u− 1, l − 1] such that Xl̂ 6= ∅ then
19 Reset l to the maximum such l̂ // go to line 11

20 else
21 l← u− 1 // then,

⋃u+1
l′=u−1 Xl′ becomes empty

22 Assign the tasks of Tδ′ on the δ′ idle processors

17

(i) For each unassigned task Tj ∈ A′, assign it onto γ(j, d) idle processors;
then, m′ = m′ − γ(j, d) (lines 3-5).

(ii) If m′ ≥ δ′, divide the idle processors into bm′δ′ c groups, each with δ′ pro-
cessors. For each group, get unassigned tasks of Au+1 ∪ Au ∪ A′′ such that
their aggregate execution time on δ′ processors is ≤ d (lines 10-21); assign
these tasks onto the group of processors (line 22).

k and δ′ are given in Equations (3) and (17). Algorithm 1 ends (i) if there are
unassigned tasks but the idle processors are not enough (m′ < k in line 6 or m′ <
δ′ in line 8), or (ii) if all tasks of T have been assigned.

4.2.1. Example

Figure 4: Task assignment when δ = 5 where each colored rectangle represents a task of some type.

We give a toy example where δ = 5 to illustrate the execution of Algorithm 1.
By Proposition 6, we have u = ν = 2, H = 4, δ′ = 5, x3 = 2, x2 = 3, and
r = 3

4 ; then, T is divided into 4 subsets A′, A3, A2, and A′′ (line 1). Suppose that
we are given m = 33, A′ = {T1}, A3 = {T2, T3, T4}, A2 = {T5, T6, · · · , T9},
A′′ = {T10, T11, · · · , T18} and γ(1, d) = H for T1. Retrospectively, we get six
groups from the m processors. The first group has γ(1, d) processors, each of the
remaining groups has δ′ processors, and there are also 4 ungrouped processors. As
illustrated in Fig. 4, Algorithm 1 assigns tasks in the following way:

(1) Assign the only task T1 of A′ onto the 1st group (lines 3-5).
(2) Assign x3 = 2 tasks of A3 onto the 2nd group (lines 7-16, 22 where l = 3).

18

(3) Assign the last unassigned task of A3 onto the 3rd group (lines 8-14, where
l = 3); then, X3 = ∅ and l becomes 2 (lines 17-19). Next, assign one task
of A2 onto the 3rd group (lines 11-14, where l = 2). The second task of A2

cannot be added and completed by time d (lines 11-12, 15-16, 22).
(4) Assign x2 = 3 tasks of A2 onto the 4th group (lines 8-16, 22 where l = 2).
(5) Similarly to the execution of Step 3, assign the last unassigned task of A2

and three tasks of A′′ onto the 5th group (lines 8-19, 22 where l = 2, 1).
(6) Assign five tasks of A′′ onto the 6th group (lines 8-16, 22 where l = 1).
(7) The algorithm ends when m′ = 4 < δ′ (line 8), although there is one unas-

signed task of A′′.

By the definition of A′ in Equation (6) and Propositions 4 and 5, the 1st-2nd
and 4th-6th groups have an execution time in [rd, d]. The 3rd group of δ′ processors
executes a mix of the tasks of A3 and A2; the aggregate execution time of tasks
is < rd but ≥ (1 − l2)d since the rejected task of A2 has an execution time ≤
l2d = 3d/10 by Proposition 5. Finally, there is one unassigned task of A′′ and the
number of idle processors is at most δ′ − 1. The total number of processors whose
execution time is < rd is δ′ + (δ′ − 1) = 2δ′ − 1. The total workload processed
by the m processors in [0, d] is at least

w′ = (m− 2δ′ + 1)rd+ δ′(1− l2)d,

and the overall processor utilization in [0, d] is at least

w′

md
= r − r(2δ′ − 1)

m
+

(1− l2)δ′

m
=

3

4
− 3.25

m
. (18)

4.2.2. Algorithm Analysis
Now, we prove the features of Sched. The following conclusion is a general-

ization of Equation (18) in the example above.

Proposition 9. If Sched cannot schedule all tasks of T on the m processors by
time d, then Sched achieves a processor utilization of at least

θ(δ) = r − rk

m

where r = u+1
u+2 ∈ (0, 1).

Proof. The proof is a generalization of the analysis process to derive Equation (18).
Please see the detailed proof in Appendix C.

Proposition 10. Given the value of d and the values of kj and δj of each task
Tj ∈ T , the time complexity of Algorithm 1 is O(n logm).

19

Proof. The time complexity of task classification is O(n logm) by Proposition 8
(line 1). Afterwards, the n tasks are assigned to processors one by one (lines 4,
12) and Sched stops when all tasks are assigned or there are not enough proces-
sors to assign the remaining tasks, which has a time complexity of O(n). Hence,
Algorithm 1 has a time complexity of O(n logm).

Let S denote the tasks accepted and scheduled by Algorithm 1 where S ⊆ T .
γ(j, d) denotes the minimum number of processors needed to complete Tj by time
d. As illustrated in Fig. 3, in Algorithm 1, the number of processors allocated to a
task is either γ(j, d) or δ′ that is no larger than δ by Inequality (4a). By Definition
1 and Property 3.1, we have the following lemma.

Lemma 11. In Algorithm 1, we have for every task Tj ∈ S that its workload is
Dj,γ(j,d), which is the minimum workload needed to be processed to complete Tj
by time d.

Proof. Please see the detailed proof in Appendix D.

With Proposition 9 and Lemma 11, we have completed the design of the schedul-
ing algorithm Sched described in Section 3.

5. Application to Two Objectives

In this section, we apply Sched to respectively minimize the makespan and
maximize the throughput with a common deadline τ .

5.1. Makespan Minimization

Now, we give the algorithm for makespan minimization, which is formally
presented in Algorithm 2 and also referred to as the OMS algorithm (Optimized
MakeSpan). Its high-level idea is as follows. Initially, let U and L be such that
Sched can produce a feasible schedule of all tasks of T by time U but fails to do
so by time L, e.g., U = n(δ+2)maxTj∈T {tj,1} and L = 0 (line 1); we explain the
reason why suchU is feasible in Appendix E. TheOMS algorithm will repeatedly
operate as follows and stops when U ≤ (1 + ε)L (line 2):

1. M ← U+L
2 (line 3).

2. judge whether there exists a task Tj ∈ T that cannot be completed by time
M with the parallelism bound kj (lines 4-8).

3. if γ(j,M) ∈ [1, kj] for every task Tj ∈ T and Sched can produce a feasible
schedule of all tasks of T by time M , set U ← M (lines 9-11); otherwise,
set L←M (lines 9, 12-15).

20

Algorithm 2: The OMS(ε) algorithm

1 L← 0, U ← n(δ + 2)maxTj∈T {tj,1}
2 while U > (1 + ε)L do
3 M ← L+U

2
4 Flag← 1
5 for j ← 1 to n do
6 if γ(j,M) = +∞ then
7 Flag← 0
8 break

9 if Flag = 1 then
// every task Tj ∈ T can be completed by time M,

i.e., γ(j, d) ∈ [1, kj]

10 if Sched produces a feasible schedule of all tasks of T by time M
then

11 U ←M

12 if Sched can only schedule a part of tasks of T by time M then
13 L←M

14 else
15 L←M

In the rest of this subsection, we analyze the approximation ratio and complex-
ity of the algorithm. As shown below, for a task Tj , the larger the value of d, the
smaller the value of γ(j, d).

Lemma 12. If d′ < d′′ and γ(j, d′), γ(j, d′′) ∈ [1, kj], then we have γ(j, d′) ≥
γ(j, d′′).

Proof. We prove this by contradiction. Suppose γ(j, d′) < γ(j, d′′); then we have
by Property 3.1 that tj,γ(j,d′) ≥ tj,γ(j,d′′). Since tj,γ(j,d′) ≤ d′ < d′′, the minimum
number of processors needed to complete Tj by time d′′ is no greater than γ(j, d′),
which contradicts the assumption that γ(j, d′) < γ(j, d′′).

Let d∗ denote the optimal makespan. In an optimal schedule, let D∗j denote
the workload of a task Tj and D∗ denote the total workload of all tasks of T to be
processed on the m processors in [0, d∗] where we have

md∗ ≥ D∗. (19)

21

When the OMS algorithm ends, if γ(j, L) ∈ [1, kj] for every task Tj ∈ T , only a
part of tasks are scheduled by Sched by time L and we have by Proposition 9 that
θ(δ) is a lower bound of the processor utilization in [0, L]; we denote by DL

j the
workload of a scheduled task Tj and by DL the total workload of all the scheduled
tasks; here, we have

mL ≥ DL ≥ θ(δ)mL. (20)

Lemma 13. When the OMS algorithm ends, if d∗ < L, then we have that (i)
D∗ ≥ DL and (ii) γ(j, L) ∈ [1, kj] for every task Tj ∈ T .

Proof. For every Tj ∈ T , if d∗ < L, we have γ(j, L) ∈ [1, kj] since Tj can be
finished by d∗, with the parallelism bound kj . By Lemma 12, if d′ < d′′, we
have γ(j, d′) ≥ γ(j, d′′). Since d∗ < L, we have in an optimal schedule that
the number of processors assigned to a task Tj is ≥ γ(j, d∗), which is ≥ γ(j, L).
By Property 3.1, we have D∗j ≥ Dj,γ(j,d∗) ≥ Dj,γ(j,L). By Lemma 11, we have
Dj,γ(j,L) = DL

j . Finally, we have D∗j ≥ DL
j and D∗ ≥ DL.

Proposition 14. The OMS algorithm gives a 1
θ(δ)(1 + ε)-approximation to the

makespan minimization problem with a complexity of O(n logm log (nmtm/ε))
where tm = maxTj∈T {tj,1}.

Proof. For the approximation ratio, it suffices to show U/d∗ ≤ 1
θ(δ)(1 + ε) where

θ(δ) ∈ (0, 1). When the OMS algorithm ends, we have

U ≤ (1 + ε)L. (21)

Obviously, d∗ ≤ U . In the case that d∗ ∈ [L,U], we have U
d∗ ≤ 1+ε ≤ 1

θ(δ)(1+ε).

In the other case that d∗ < L, we have by Inequalities (19), (20) and (21) and
Lemma 13 that

md∗ ≥ D∗ ≥ DL ≥ mθ(δ)L ≥ mθ(δ) U

1 + ε
.

Further, we have U/d∗ ≤ (1 + ε)/θ(δ).
Executing the OMS algorithm needs prior knowledge of the values of kj and

δj of all the n tasks of T , which will be used for computing the upper bound U and
in calling Sched (lines 1, 10, 12); the time complexity of obtaining these values
is O(n logm) by Proposition 7. While executing the OMS algorithm, the initial
values of U and L are n(δ + 2)tm and 0. The binary search stops when U ≤
L(1 + ε) and the number of iterations is O(log (nδtm/ε)) ≤ O(log (nmtm/ε)),
where δ ≤ m. At each iteration, the time complexity of computing γ(j, d) is

22

Algorithm 3: GreedyAlgo(τ)

1 initialize Si = {T1, T2, · · · , Ti} for all i ∈ [1, n];
2 for i← 1 to n do
3 if Sched produces a feasible schedule of all tasks of Si by time τ then
4 i′ ← i;

5 else
6 exit;

O(log kj) ≤ O(logm) as we show in the proof of Proposition 8; while judging
whether there exists a task Tj ∈ T that cannot be completed by timeM (lines 4-8),
the time complexity is O(n logm); then, Sched is run (line 10 or 12) and has a
time complexity O(n logm) by Proposition 10. The entire execution process has
a time complexity O(n logm log (nmtm/ε)), which is also the complexity of the
OMS algorithm.

5.2. Throughput Maximization with a Common Deadline
Let v′j = vj/Dj,γ(j,τ), and it is the maximum possible value obtained from

processing a unit of workload of Tj , referred to as the (maximum) value density of
Tj . We assume without loss of generality that

v′1 ≥ v′2 ≥ · · · ≥ v′n.

We propose a greedy algorithm called GreedyAlgo, presented in Algorithm 3: it
considers tasks in the non-increasing order of their value densities v′j and finally
finds the maximum i′ such that Sched can output a feasible schedule by time τ for
the first i′ tasks, denoted by Si′ , but fails to do so for the first i′ + 1 tasks. The
throughput of GreedyAlgo is

∑i′

j=1 vj .

Proposition 15. GreedyAlgo gives a θ(δ)-approximation to the throughput maxi-
mization problem with a common deadline and it has a complexity ofO(n2 logm).

In the rest of this subsection, we give an overview of the proof of Proposi-
tion 15. By Proposition 9, θ(δ) is a lower bound of the processor utilization when
Sched schedules Si′ in [0, τ]. Let OPT denote the optimal throughput of our
problem. The proof of Proposition 15 has two parts:

(i) We give an upper bound of OPT , denoted by OPT , i.e.,

OPT ≥ OPT (22)

where OPT will be specified in Equation (24).

23

(ii) We show that θ(δ) is a lower bound of the ratio of the throughput of GreedyAlgo
to the upper bound, i.e., ∑i′

j=1 vj

OPT
≥ θ(δ). (23)

Then, we have by Inequalities (22) and (23) that∑i′

j=1 vj

OPT
≥
∑i′

j=1 vj

OPT
≥ θ(δ).

Thus, the throughput
∑i′

j=1 vj of GreedyAlgo is at least θ(δ) times the optimal
throughput OPT and GreedyAlgo is a θ(δ)-approximation algorithm.

For the first part, let us consider a fractional knapsack problem (Korte & Vy-
gen, 2018) and there are a knapsack of size τm and n divisible items. With abuse
of notation, each item is still denoted by Tj , with a fixed size Dj,γ(j,τ) and a
value vj . Its optimal solution is packing into the knapsack the first σ items, de-
noted by S ′, with the highest value densities such that their total size equals τm:∑σ−1

j=1 Dj,γ(j,τ) + αDσ,γ(σ,τ) = τm where α ∈ (0, 1] and the σ-th item may be
partially packed. The following lemma completes the description of the first part.

Lemma 16. An upper bound of OPT is

OPT =
∑σ−1

j=1
vj + αvσ, (24)

which is the optimal value of the knapsack problem.

Proof. GreedyAlgo chooses a subset of tasks Si′ = {T1, T2, · · · , Ti′} and uses
Sched to schedule Si′ on the m processors in [0, τ]. We will show that any so-
lution to the problem of this paper corresponds to a feasible solution to the above
knapsack problem, where the same tasks/items are chosen and the two solutions
have the same total value of tasks/items; the lemma thus holds. Specifically, when
a task Tj ∈ Si′ is chosen in our problem and assigned pj processors, we can cor-
respondingly pack an item Tj with a size Dj,γ(j,τ) into the above knapsack. By
Lemma 11, Dj,pj = Dj,γ(j,τ) and

∑
Tj∈Si′

Dj,γ(j,τ) ≤ τm; thus, the items T1, T2,
· · · , Ti′ can successfully be packed into the knapsack.

For the second part, the detailed proof of (23) will be provided in Appendix
F. Below, we provide the underlying intuition while proving (23). The workload
of each task Tj ∈ Si′ accepted by GreedyAlgo is also Dj,γ(j,d) by Lemma 11. Si′
and S ′ contain the first i′ and σ tasks with the highest value densities respectively.

24

We have i′ ≤ σ since in GreedyAlgo the utilization of the m processors in [0, τ]
is ≤ 1. Thus, the average value density of Si′ is no smaller than the average value
density of S ′, i.e., ∑i′

j=1 vj∑i′

j=1Dj,γ(j,d)

≥ OPT
τm

.

Further, we can prove (23):∑i′

j=1 vj

OPT
≥
∑i′

j=1Dj,γ(j,d)

τm
≥ θ(δ).

Executing GreedyAlgo needs prior knowledge of the values of kj and δj of all
the n tasks of T , which will be used in calling Sched (line 3); the time complexity
of obtaining these values is O(n logm) by Proposition 7. During its execution,
it considers S1, S2, · · · , Sn one by one (line 2). Whenever Sched attempts to
schedule the tasks of Si on m processor by time τ (line 3), it has a time complex-
ity O(n logm) by Proposition 10. Thus, the entire execution process has a time
complexity O(n2 logm), which is also the complexity of GreedyAlgo.

6. Conclusions

In this paper, we study the problem of scheduling n independent moldable tasks
on m processors that arises in large-scale parallel computations. For makespan
minimization, the best known result is a (32 + ε)-approximation algorithm with a
complexity linear in n and polynomial in logm and 1

ε , where ε is arbitrarily small;
it is achieved under a monotonic assumption: the execution time of a task Tj is
non-increasing and its workload is non-decreasing in the number p of assigned
processors. We propose a new perspective of the existing speedup models: the
speedup of a task Tj is linear when p is small (up to a threshold δj); afterwards,
there may be a larger threshold kj such that the task is strictly monotonic when
p ranges in [δj , kj]; the bound kj indicates an unacceptable overhead when paral-
lelizing the task on too many processors. Let δ be the minimum linear-speedup
threshold of all tasks and k be the maximum parallelism bound of all tasks. For
any δ ≥ 5, let u = d 2

√
δe − 1. A main algorithmic result of this paper is a

1
θ(δ)(1 + ε)-approximation algorithm for makespan minimization with a complex-

ity O(n logm log (nmtm/ε)) where θ(δ) = u+1
u+2

(
1− k

m

)
(m � k); typically, δ

can range in [25, 150]. As a by-product, we also propose a θ(δ)-approximation al-
gorithm for throughput maximization with a common deadline with a complexity
O(n2 logm).

25

Acknowledgements

The work of Xiaohu Wu has been partially supported by the National Key
R&D Program of China (2022YFB2902900). The work of Patrick Loiseau has
been partially supported by MIAI@Grenoble Alpes (ANR-19-P3IA-0003), by the
French National Research Agency (ANR) through grant ANR-20-CE23-0007 and
through the “Investissements d’avenir” program (ANR-15-IDEX-02); and by the
Alexander von Humboldt Foundation.

References

Aridor, Y., Domany, T., Goldshmidt, O., Kliteynik, Y., Moreira, J., & Shmueli, E.
(2005). Open job management architecture for the blue gene/l supercomputer.
In Proceedings of the 11th Workshop on Job Scheduling Strategies for Parallel
Processing (pp. 91–107). Springer.

Barketau, M., Kovalyov, M., Weglarz, J., & Machowiak, M. (2014). Scheduling
arbitrary number of malleable tasks on multiprocessor systems. Bulletin of the
Polish Academy of Sciences. Technical Sciences, 62, 255–261.

Belkhale, K. P., & Banerjee, P. (1990). An approximate algorithm for the parti-
tionable independent task scheduling problem. In Proceedings of the 1990 In-
ternational Conference on Parallel Processing (pp. 72–75). Pennsylvania State
University Press.

Benoit, A., Le Fèvre, V., Perotin, L., Raghavan, P., Robert, Y., & Sun, H. (2022a).
Resilient scheduling of moldable parallel jobs to cope with silent errors. IEEE
Transactions on Computers, 71, 1696–1710.

Benoit, A., Perotin, L., Robert, Y., & Sun, H. (2022b). Online scheduling of mold-
able task graphs under common speedup models. In Proceedings of the 51st
International Conference on Parallel Processing (pp. 1–12). ACM.

Blazewicz, J., Kovalyov, M., Machowiak, M., Trystram, D., & Weglarz, J. (2006).
Preemptable malleable task scheduling problem. IEEE Transactions on Com-
puters, 55, 486–490.

Blazewicz, J., Machowiak, M., Weglarz, J., Kovalyov, M. Y., & Trystram, D.
(2004). Scheduling malleable tasks on parallel processors to minimize the
makespan. Annals of Operations Research, 129, 65–80.

26

Crescenzi, P. (1997). A short guide to approximation preserving reductions. In
Proceedings of the Twelfth Annual IEEE Conference Computational Complexity
(pp. 262–273). IEEE.

Crescenzi, P., Fraigniaud, P., Halldorsson, M., Harutyunyan, H. A., Pierucci, C.,
Pietracaprina, A., & Pucci, G. (2016). On the complexity of the shortest-path
broadcast problem. Discrete Applied Mathematics, 199, 101–109.

Decker, T., Lücking, T., & Monien, B. (2006). A 5
4 -approximation algorithm for

scheduling identical malleable tasks. Theoretical Computer Science, 361, 226–
240.

Drozdowski, M. (1996). Real-time scheduling of linear speedup parallel tasks.
Information processing letters, 57, 35–40.

Drozdowski, M. (2004). Scheduling parallel tasks – algorithms and complexity. In
Handbook of scheduling: algorithms, models, and performance analysis. CRC
Press.

Dutton, R. A., & Mao, W. (2007). Online scheduling of malleable parallel jobs.
In Proceedings of the 19th IASTED International Conference on Parallel and
Distributed Computing and Systems (pp. 136–141). ACTA Press.

Dutton, R. A., Mao, W., Chen, J., & Watson III, W. (2008). Parallel job scheduling
with overhead: A benchmark study. In Proceedings of the IEEE International
Conference on Networking, Architecture, and Storage (pp. 326–333). IEEE.

Ebrahimi, R., McCauley, S., & Moseley, B. (2018). Scheduling parallel jobs online
with convex and concave parallelizability. Theory of Computing Systems, 62,
304–318.

Fishkin, A. V., Gerber, O., Jansen, K., & Solis-Oba, R. (2005). Packing weighted
rectangles into a square. In Proceedings of the 30th International Symposium on
Mathematical Foundations of Computer Science (pp. 352–363). Springer.

Guo, L., & Shen, H. (2017). Efficient approximation algorithms for the bounded
flexible scheduling problem in clouds. IEEE Transactions on Parallel and Dis-
tributed Systems, 28, 3511–3520.

Guo, S., & Kang, L. (2010). Online scheduling of malleable parallel jobs with setup
times on two identical machines. European Journal of Operational Research,
206, 555–561.

27

Havill, J. T., & Mao, W. (2008). Competitive online scheduling of perfectly mal-
leable jobs with setup times. European Journal of Operational Research, 187,
1126–1142.

Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms
for scheduling problems theoretical and practical results. Journal of the ACM,
34, 144–162.

Jain, N., Menache, I., Naor, J., & Yaniv, J. (2012). Near-optimal scheduling mech-
anisms for deadline-sensitive jobs in large computing clusters. In Proceedings
of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures SPAA’12 (pp. 255–266). ACM.

Jansen, K. (2012). A (32 +ε) approximation algorithm for scheduling moldable and
non-moldable parallel tasks. In Proceedings of the 24th annual ACM symposium
on Parallelism in algorithms and architectures (pp. 224–235). ACM.

Jansen, K., & Land, F. (2018). Scheduling monotone moldable jobs in linear time.
In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium (pp. 172–181). IEEE.

Jansen, K., & Porkolab, L. (2002). Linear-time approximation schemes for
scheduling malleable parallel tasks. Algorithmica, 32, 507–520.

Jansen, K., & Thöle, R. (2010). Approximation algorithms for scheduling parallel
jobs. SIAM Journal on Computing, 39, 3571–3615.

Jansen, K., & Zhang, G. (2007). Maximizing the total profit of rectangles packed
into a rectangle. Algorithmica, 47, 323–342.

John, L. K., & Eeckhout, L. (2018). Performance evaluation and benchmarking.
CRC Press.

Kell, N., & Havill, J. (2015). Improved upper bounds for online malleable job
scheduling. Journal of Scheduling, 18, 393–410.

Korte, B., & Vygen, J. (2018). The knapsack problem. In Combinatorial Opti-
mization: Theory and Algorithms (pp. 471–487). Berlin, Heidelberg: Springer.

Lucier, B., Menache, I., Naor, J. S., & Yaniv, J. (2013). Efficient online schedul-
ing for deadline-sensitive jobs. In Proceedings of the 25th ACM symposium on
Parallelism in Algorithms and Architectures (pp. 305–314). ACM.

28

Ludwig, W., & Tiwari, P. (1994). Scheduling malleable and nonmalleable parallel
tasks. In Proceedings of the fifth annual ACM-SIAM symposium on Discrete
algorithms (pp. 167–176). ACM.

Mounié, G., Rapine, C., & Trystram, D. (1999). Efficient approximation algo-
rithms for scheduling malleable tasks. In Proceedings of the 11th ACM sympo-
sium on Parallel algorithms and architectures (pp. 23–32). ACM.

Mounié, G., Rapine, C., & Trystram, D. (2007). A 3
2 -approximation algorithm for

scheduling independent monotonic malleable tasks. SIAM Journal on Comput-
ing, 37, 401–412.

Steinberg, A. (1997). A strip-packing algorithm with absolute performance bound
2. SIAM Journal on Computing, 26, 401–409.

Turek, J., Wolf, J. L., & Yu, P. S. (1992). Approximate algorithms scheduling
parallelizable tasks. In Proceedings of the fourth annual ACM symposium on
Parallel algorithms and architectures (pp. 323–332). ACM.

Wang, Q., & Cheng, K.-H. (1992). A heuristic of scheduling parallel tasks and its
analysis. SIAM Journal on Computing, 21, 281–294.

Wu, F., Zhang, X., & Chen, B. (2023). An improved approximation algorithm
for scheduling monotonic moldable tasks. European Journal of Operational
Research, 306, 567–578.

Wu, X., & Loiseau, P. (2015). Algorithms for scheduling deadline-sensitive mal-
leable tasks. In Proceedings of the 53rd Annual Allerton Conference on Com-
munication, Control, and Computing (pp. 530–537). IEEE.

Appendix A. S-reduction

For a given objective, the problem of offline scheduling of independent mold-
able tasks on identical machines under the (δj , kj)-monotonic model is referred to
as the problem A, while its counterpart under the monotonic model is referred to
as the problem B. let OPT A and OPT B denote the optimal objective function
values of the two problems A and B; here, the objective function can be either
makespan minimization or throughput maximization. Let cA and cB denote the
objective function values of the two problems A and B. A S-reduction from A to
B is formally defined as follows (Crescenzi, 1997; Crescenzi et al., 2016):

29

Definition 17. A pair of functions (f, g) is a S-reduction from A to B if all of the
following conditions are met: (1) functions f and g are computable in polynomial
time; (2) if x is an instance of problem A, then f(x) is an instance of problem B,
and OPT B(f(x)) = OPT A(x); (3) if y is a solution to f(x), then g(x, y) is a
solution to x, and cA(x, g(x, y)) = cB(f(x), y).

Proposition 18. The problem A is S-reducible to the problem B, where f and g
have the same time complexity O(n).

Proof. Let x denote a specific set of n independent (δj , kj)-monotonic moldable
tasks {T1, T2, · · · , Tn} for the problemA. For each task Tj ∈ x, its execution time
is non-increasing and its workload is non-increasing in the number p of processors
allocated to it when p ∈ [1, kj]. We also construct another task T ′j as follows: (i)
it has the same speedup feature as Tj when p ∈ [1, kj], (ii) if T ′j is allocated more
than kj processors (i.e., p > kj), its execution time and workload cease to change,
i.e., t′j,p = t′j,kj and D′j,p = D′j,kj where t′j,p is the execution time of T ′j and D′j,p
is the workload of T ′j when it is allocated p processors, and (iii) all other possible
features of T ′j are the same as Tj , such as the execution time on one processor
and the task value; here, allocating T ′j more than kj processors does not bring any
benefit although there is no parallelism constraint on T ′j . Each task T ′j in f(x) is
a monotonic task. Let f(x) = {T ′1, T ′2, · · · , T ′n}, which is an instance of B. The
time complexity of constructing f(x) from x is O(n).

Suppose y is an optimal or approximate solution to f(x); y defines a feasible
schedule of f(x) that determines the number p′j of processors allocated to each
task T ′j ∈ f(x) and the time interval [a′j , e

′
j] in which T ′j is executed. Each Tj

in x uniquely corresponds to a task T ′j in f(x), and vice versa. The following
function g transforms the solution y into a feasible solution g(x, y) to x: for each
scheduled task T ′j in f(x) for the problemB, allocate min{kj , p′j} processors to Tj
and execute Tj in the same time interval [a′j , e

′
j] when it comes to the problemA; if

a task T ′j in f(x) is not scheduled, the corresponding Tj in x is not scheduled either.
Obviously, g can be computed with a time complexity O(n). In the solutions
g(x, y) and y, Tj ∈ x and T ′j ∈ f(x) have the same workload and are finished
at the same time, if they are scheduled. Thus, the two solutions have the same
objective function value, e.g., the same makespan or throughput. Thus, we have
cA(x, g(x, y)) = cB(f(x), y), and

OPT A(x) ≥ OPT B(f(x)). (A.1)

Conversely, if y′ is an optimal solution to x for the problem A in which the
number of processors allocated to each task Tj ∈ x is pj and the time interval in
which Tj is executed is [aj , ej]. Then, this solution to x is also a solution to f(x)

30

for the problem B. Thus, the two solutions have the same objective function value.
we thus have

OPT A(x) ≤ OPT B(f(x)). (A.2)

By (A.1) and (A.2), we have OPT A(x) = OPT B(f(x)).

Appendix B. Proof of Proposition 6

We can easily verify that the setting in Equation (17) satisfies the relation (4a).
We have

rν

δ′
=
u+ 1

u+ 2

u

u2 + 1

(a)

≥ 1

u+ 2
= 1− r

where the above (a) is due to u(u+1) ≥ u2+1; thus, the relation (4b) is satisfied.
We have

r(ν − 1)

δ′
=
u+ 1

u+ 2

u− 1

u2 + 1
<

1

u+ 2
= 1− r;

thus, the relation (4c) is satisfied.
We have h ∈ [ν,H − 1] = [u, u + 1] by Equation (17). In the following, we

first prove that the relations (5a) and (5b) hold when h = u. We have

r
u

δ′
xu =

u+ 1

u+ 2

u

u2 + 1
(u+ 1)

(b)

≤ 1 (B.1)

where (b) is due to that (u+1)2u− (u+2)(u2+1) = −2 < 0. Thus, the relation
(5a) holds when h = u. We have

max

{
1− r, u− 1

δ′

}
= max

{
1

u+ 2
,
u− 1

u2 + 1

}
(c)
=

{
1

u+2 if 2 ≤ u ≤ 3
u−1
u2+1

if u ≥ 4

(B.2)

where (c) is due to that (u2 +1)− (u+2)(u− 1) = 3− u. Further, if 2 ≤ u ≤ 3,
we have

1

u+ 2
xu =

u+ 1

u+ 2
≤ 1. (B.3)

If u ≥ 4, we can easily verify that

u− 1

u2 + 1
xu =

(u− 1)(u+ 1)

u2 + 1
≤ 1. (B.4)

31

By Inequalities (B.2), (B.3) and (B.4), the relation (5b) holds when h = u.
Next, we prove that the relations (5a) and (5b) hold when h = u+ 1.

r
u+ 1

δ′
xu+1 =

u+ 1

u+ 2

u+ 1

u2 + 1
u

(d)

≤ 1 (B.5)

where (d) is again due to that (u+ 1)2u− (u+ 2)(u2 + 1) = −2 < 0. Thus, the
relation (5a) holds when h = u+ 1. We have

max
{
1− r, u

δ′

}
= max

{
1

u+ 2
,

u

u2 + 1

}
(e)
=

u

u2 + 1

where (e) is due to that (u+ 2)u− (u2 + 1) = 2u− 1 > 0. Further, we can easily
verify that

u

u2 + 1
xu+1 =

u2

u2 + 1
≤ 1.

Thus, the relation (5b) holds when h = u+ 1.

Appendix C. Proof of Proposition 9

After executing Sched, the m processors may be divided into three parts:

(i) the first part executes the tasks ofA′ (lines 3-5), e.g, the 1st group of proces-
sors in the example above,

(ii) the second part executes the tasks of AH−1, · · · , Au, A′′ (lines 7-22), e.g.,
the 2nd-6th groups in the example,

(iii) the third part is idle and not assigned any task.

Sched ends with two cases: (i) m′ < k (line 6), or (ii) m′ < δ′ (line 8). Different
parts exist in each case. Our analysis proceeds by showing (a) which parts of
processors exist in each case and (b) the utilization of each part. θ(δ) is a lower
bound of the ratio of the total workload processed by different parts to md.

First, we analyze the utilizations of the three parts. The first part of processors
has a utilization≥ r in [0, d] by the definition ofA′. The utilization of the third part
is zero. The second part can be divided into several groups, each with δ′ processors.
Let Au−1 = A′′ for ease of exposition. For each group, we have

(1) it is assigned the tasks purely from a single set Ah where h ∈ [u− 1, u+ 1]
(see the second, fourth and sixth groups in the example), or

(2) it is a mix of the tasks of multiple sets Ah, Ah−1, · · · , Ah′ where u + 1 ≥
h > h′ ≥ u− 1 and h′ ∈ {u, u− 1}.

32

In the former case, each group has an execution time ≥ rd by Propositions 4 and
5. In the latter, there exists a task Tj of Ah′ that cannot be completed by time d:

(2.a) if h′ = u, the group may have an execution time < rd but ≥ (1 − lu)d
since tj,δ′ < lud by Proposition 5 (see the third group in the example); by
Proposition 6, the processed workload is at least

w = δ′(1− lu)d = (u2 + 1)

(
1− u

u2 + 1

u+ 1

u+ 2

)
d =

u3 + u2 + 2

u+ 2
d.

(C.1)

(2.b) if h′ = u − 1, the group has an execution time ≥ rd since tj,δ′ < (1 − r)d
(see the fifth group in the example).

To sum up, in the second part, there are at most δ′ processors whose utilization is
< r in [0, d] and on which the amount of processed workload is ≥ w.

Next, we analyze which parts of processors exist. In the first case, Sched ends
at line 6 and the first and third parts may exist. The third part has at most k−1 idle
processors. Thus, the average utilization of the m processors is at least

r1 =
(m− k + 1)rd

md
= r − rk − 1

m
.

In the second case, Sched ends at line 8. All the three parts may exist and the
third part has at most δ′ − 1 processors. For the second part, there are at most
δ′ processors whose utilization is < r. Thus, the average utilization of the m
processors is at least

r2 =
w + (m− δ′ − (δ′ − 1))rd

md

(a)
= r − 1

m

((
2u2 + 1

) u+ 1

u+ 2
− u3 + u2 + 2

u+ 2

)
= r − 1

m

u3 + u2 + u− 1

u+ 2

(b)
= r − 1

m

(
δ′r − 2

u+ 2

)
where the above (a) and (b) are due to Equation (C.1) and Proposition 6. Finally,
when Sched ends, a lower bound of the processor utilization is min{r1, r2}, i.e.,

θ(δ) = r −max

{
r(k − 1)

m
,
1

m

(
δ′r − 2

u+ 2

)}
(c)

≥ r − rk

m
(C.2)

where (c) is because δ′ ≤ δ ≤ k by Inequality (4a).

33

Appendix D. Proof of Lemma 11

γ(j, d) is the minimum number of processors needed to complete Tj by time
d. By Property 3.1, Dj,γ(j,d) is the minimum workload needed to be processed to
complete Tj by time d. In Algorithm 1, the number of processors used to simulta-
neously execute a task is either γ(j, d) forA′ or no more than δ forAH−1, · · · ,Au,
and A′′. For the latter, by Inequality (4a), we have for each task Tj that γ(j, d) ≤
H − 1 ≤ δ′ ≤ δ; by Property 3.1, the workload of Tj keeps constant when the
number of assigned processors varies in [0, δ] and we have in Algorithm 1 that the
workload of Tj equals Dj,γ(j,d). Thus, the lemma holds.

Appendix E. The Initial Value of U

The initial value of U is set as

U = n(δ + 2)maxTj∈T {tj,1},

which is at least δ + 2 times the total execution time of all tasks when every task
is assigned one processor. γ(j, U) is the minimum number of processors needed
to complete Tj by time U , and we have γ(j, U) = 1 for all Tj ∈ T . We have by
Inequality (4a) that 1 ≤ H − 1 ≤ δ′ ≤ δ. By Property 3.1, we have for every task
Tj ∈ T that

tj,δ′ =
tj,1
δ′
≤ U

n(δ + 2)δ′
≤ U

δ + 2
<
U

H
= (1− r)U

where n ≥ 1 and r = H−1
H . Every task of T has an execution time < (1 − r)U

when assigned δ′ processors. Thus, all tasks of T are in the classA′′, and the other
classes A′, AH−1, · · · , Aν are empty. Now, we show that Sched can produce a
feasible schedule for all tasks of T by time U . All tasks of T constitute A′′ and
will be executed one by one on δ′ processors (see lines 7-22 of Algorithm 1); the
total execution time of T is ≤ nmaxTj∈T {tj,1} ≤ U .

Appendix F. The Detailed Proof of the Second Part

Below, we formally prove Inequality (23). GreedyAlgo accepts the first i′ tasks
with the highest value densities v′j , and the achieved throughput is

∑i′

j=1 vj . Sched
is used to schedule the i′ tasks, and each accepted task Tj has a workload Dj,γ(j,τ)

by Lemma 11. We denote by ω ∈ [0, 1] the actual utilization of the m processors
in [0, τ] achieved by GreedyAlgo, i.e.,

i′∑
j=1

Dj,γ(j,τ) = ωτm.

34

By Proposition 9, θ(δ) is a lower bound of the processor utilization and we have

ω ≥ θ(δ) ∈ (0, 1). (F.1)

Since ω ≤ 1, we have

i′ ≤ σ. (F.2)

Lemma 19. The throughput
i′∑
j=1

vj achieved by GreedyAlgo is at least θ(δ)OPT

where OPT is given in Equation (24).

Proof. By Inequality (F.2), we will analyze two cases that i′ = σ and i′ < σ
respectively. In the case that i′ = σ, we have

i′∑
j=1

vj ≤ OPT =
σ−1∑
j=1

vj + αvσ

by Lemma 16. Thus, we have α = 1 and the lemma holds.
In the case that i′ < σ, let

X1 =
1

ω

i′∑
j=1

Dj,γ(j,τ) −
i′∑
j=1

Dj,γ(j,τ)

X2 =


σ−1∑
j=i′+1

Dj,γ(j,τ) + αDσ,γ(j,τ) if i′ < σ − 1

αDσ,γ(j,τ) if i′ = σ − 1

Y =


σ−1∑
j=i′+1

vj + αvσ if i′ < σ − 1

αvσ if i′ = σ − 1

Recall

τm =
1

ω

i′∑
j=1

Dj,γ(j,τ) =

σ−1∑
j=1

Dj,γ(j,τ) + αDσ,γ(σ,τ).

We thus have X1 = X2 since

τm−X1 =

i′∑
j=1

Dj,γ(j,τ) = τm−X2.

35

The total value obtained by GreedyAlgo is
i′∑
j=1

vj and we have

i′∑
j=1

vj

ωτm

(a)
=

i′∑
j=1

v′j
(
1
ωDj,γ(j,τ) −Dj,γ(j,τ) +Dj,γ(j,τ)

)
τm

(b)

≥

i′∑
j=1

vj + v′i′X1

τm

(c)
=

i′∑
j=1

vj + v′i′X2

τm

(d)

≥

i′∑
j=1

vj + Y

τm
=
OPT
τm

.

(F.3)

Here, in Equation (a), vj = v′jDj,γ(j,τ); Inequalities (b) and (d) are due to that
v′1 ≥ · · · ≥ v′i′ ≥ · · · ≥ v′n; Equation (c) is due to that X1 = X2. Due to

Inequality (F.3), we have
i′∑
j=1

vj ≥ ωOPT ; further, by Inequality (F.1), the lemma

holds.

36

	Introduction
	General Problem Description
	Typical Speedup Models, and Motivation
	Algorithmic Results

	Related Work
	Makespan Minimization
	Throughput Maximization

	Overview of the Approaches
	The Algorithm Sched
	Task Classification
	Algorithm Description
	Example
	Algorithm Analysis

	Application to Two Objectives
	Makespan Minimization
	Throughput Maximization with a Common Deadline

	Conclusions
	S-reduction
	Proof of Proposition 6
	Proof of Proposition 9
	Proof of Lemma 11
	The Initial Value of U
	The Detailed Proof of the Second Part

