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To better understand discriminations and the effect of affirmative actions in selection problems (e.g., college

admission or hiring), a recent line of research proposed a model based on differential variance. This model

assumes that the decision-maker has a noisy estimate of each candidate’s quality and puts forward the difference

in the noise variances between different demographic groups as a key factor to explain discrimination. The

literature on differential variance, however, does not consider the strategic behavior of candidates who can

react to the selection procedure to improve their outcome, which is well-known to happen in many domains.

In this paper, we study how the strategic aspect affects fairness in selection problems. We propose to model

selection problems with strategic candidates as a contest game: A population of rational candidates compete by

choosing an effort level to increase their quality. They incur a cost-of-effort but get a (random) quality whose

expectation equals the chosen effort. A Bayesian decision-maker observes a noisy estimate of the quality of

each candidate (with differential variance) and selects the fraction α of best candidates based on their posterior

expected quality; each selected candidate receives a reward S . We characterize the (unique) equilibrium of this

game in the different parameters’ regimes, both when the decision-maker is unconstrained and when they

are constrained to respect the fairness notion of demographic parity. Our results reveal important impacts of

the strategic behavior on the discrimination observed at equilibrium and allow us to understand the effect of

imposing demographic parity in this context. In particular, we find that, in many cases, the results contrast

with the non-strategic setting. We also find that, when the cost-of-effort depends on the demographic group

(which is reasonable in many cases), then it entirely governs the observed discrimination (i.e., the noise

becomes a second-order effect that does not have any impact on discrimination). Finally we find that imposing

demographic parity can sometimes increase the quality of the selection at equilibrium; which surprisingly

contrasts with the optimality of the Bayesian decision-maker in the non-strategic case. Our results give a new

perspective on fairness in selection problems, relevant in many domains where strategic behavior is a reality.

CCS Concepts: • Theory of computation → Algorithmic game theory and mechanism design; • Ap-
plied computing→ Economics.
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1 INTRODUCTION
Selection problems are problems in which, given multiple candidates, a decision-maker selects

a fixed fraction of them with the objective of taking the best ones. Selection problems model a

number of decision-making situations with high societal implications such as college admission or
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hiring. In such cases, it is important to consider the fairness of the selection outcome—that is that

there is no discrimination against demographic groups defined by sensitive attributes. Yet, there
is abundant evidence, including in recent years, of discrimination in both college admission and

hiring, where the applicants are discriminated by salient demographic attributes such as gender

[1, 19], race [5, 17, 30], or age [10].

Recent literature on fairness in selection problem analyzed the problem using models based

on two key ingredients to explain discrimination. Kleinberg and Raghavan [21] model selection

problems with implicit bias (see also [7, 8, 25]), that is, where the decision-maker implicitly under-

evaluates the quality of the candidates from disadvantaged demographic groups. On the other hand,

Emelianov et al. [12, 13] and Garg et al. [16], following ideas from the economics literature on

statistical discrimination (see Section 2), assume that the decision maker’s estimate of the candidates

quality is unbiased but has a higher variance for some demographic groups (a phenomenon terms

implicit or differential variance). With both types of models, the authors study the discrimination

that comes out of baseline decision-makers, and the impact of imposing fairness mechanisms such

as the Rooney rule or the four-fifths rule.

In the above literature, the characteristics of the candidates used for selection (in particular, their

qualities) are assumed to be fixed and exogenous—i.e., they do not depend on the selection procedure.

In practice, however, candidates (i.e., individuals) involved in selection problems can adapt to the

selection procedure in order to increase the chances of a positive outcome. Such a strategic behavior
is observed in many domains [28, 34]. A recent thread of literature on strategic classification is

devoted to modeling and analyzing the impact of this strategic behavior on classification problem

[6, 11, 18, 20, 26, 27, 33, 35]. The selection problem, however, is fundamentally different from

a classification problem in that the number of positive predictions is constrained—this will in

particular lead to competition between individuals, see below. Moreover, this thread of literature

did not investigate discrimination issues. This leaves open the key question, which is our focus

in this work: How does the strategic behavior of candidates affect discrimination and the impact of
fairness mechanisms in selection problems?

The selection problem with strategic candidates modeled as a contest game. We propose

to model the selection problem with strategic candidates as a contest game (that is, roughly, as

a game where candidates compete for a reward). We consider a population of candidates. Each

candidate chooses an effort levelm that they exert to improve their quality, at a quadratic cost

Cm2/2 (where C is a constant coefficient). Each candidate has a latent qualityW drawn randomly

whose expected value is equal to their selected effortm. A Bayesian decision-maker observes a

noisy estimate Ŵ of the qualityW and selects a fraction α of the best candidates based on the

posterior expected quality W̃ = E(W |Ŵ ). All selected candidates receive a reward of size S , which
is a quantitative measure of the benefit that the selection brings to a candidate (e.g., a job position

or an education).

In our model, we assume that the population of candidates is divided in two groups: the high-

noise (H ) and the low-noise (L) group (which refers to the noise in the estimate Ŵ of the candidates

quality). This group-dependent noise represents a form of information inequality common across

different demographic groups: decision-makers are less familiar with candidates from certain

groups (the H -candidates), such that they are less able to precisely estimate the qualities of these

candidates. This phenomenon is called differential variance [13, 16]. It is at the basis of the economic

theory of statistical discrimination and it was first described by Phelps [29] to explain the racial

inequality of wages. In addition to group-dependent noise, we also consider a group-dependent cost

coefficient (i.e.,CH , CL). The group-dependent cost coefficient models socioeconomic inequalities;



e.g., for students from low-income families it is typically harder to reach a desired level of quality

due to costly preparatory courses.

Overview of our results. Our model of a selection problem with strategic candidates defines a

(population) game. We first show that this game has a unique Nash equilibrium. Then we focus

primarily on characterizing the equilibrium in the regime of large rewards S , which corresponds

roughly to high-stake selection problems. In this regime, we show that at equilibrium, the
following discrimination resulting from our model:

• If the cost coefficient is group-independent (CH = CL), then the high-noise candidates make

a greater effort in average than the low-noise candidates. The latter are underrepresented
1
in

the selection, which is counterintuitive and is in contrast with the results in the non-strategic

setting studied in [13, 16].

• If the cost coefficient is group-dependent (CH , CL), then the noise level does not affect the

outcome of the game. The cost-advantaged candidates (those for whom the cost coefficient is

smaller) make a greater average effort compared to the cost-disadvantaged candidates, and

the latter are underrepresented, irrespective of the noise. The noise is a second order effect

compared to the cost difference, which totally dominates. This offers a potential explanation

as to why low-noise candidates are often not underrepresented in practice: this is because

the cost of effort for the high-noise candidates is usually large.

In both cases stated above, one of the groups of candidates is always underrepresented. A

potential remedy for this is the so-called demographic parity mechanism, which imposes that the

decision-maker selects candidates of all demographic groups at equal rates. Next, we characterize
the equilibrium when the Bayesian decision-maker is constrained by the demographic
parity mechanism (still in the regime of large rewards S):

• We show that the demographic parity mechanism tends to equalize the average effort of the

two groups compared to the unconstrained decision-maker: in most cases, the previously

underrepresented group makes a greater average effort and the previously overrepresented

group makes a lower average effort.

• We characterize the change in the selection quality (or utility from the decision-maker

perspective) from imposing demographic parity. Interestingly, we find that in some cases, the

selection quality can improve compared to the unconstrained selection. This is surprising

since, in the non-strategic setting, the unconstrained Bayesian decision-maker is optimal

[13]. Our result shows that it is no longer true in the strategic setting as in certain cases

imposing a fairness mechanism can improve the selection quality, even against a Bayesian

baseline. In other cases, we bound the degradation of quality that can result from imposing

demographic parity.

For the case of small rewards S , we get further analytical results on the equilibrium char-
acterization. We find that the results are different from that of the case of large S , and are similar

to the ones obtained in the non-strategic setting [13, 16]: the high-noise candidates are always

underrepresented if the selection size α is small enough. This indicates that, if the reward is small,

then the impact of the strategic aspect (on discrimination results) is not important. We perform

numerical experiments to illustrate the case of intermediate rewards S and how it matches the case

of small and large S in their respective regimes.

1
“Underrepresented” in our paper means “having less representation in the selection than its share in the candidates’

population”. This is a classical definition in the algorithmic fairness literature where the notion of demographic parity

would mean that the two groups are equally represented.



Finally, we study the convergence of two dynamics to the Nash equilibrium (the best

response and fictitious play dynamics). We observe that the trajectories of the best response

dynamics converge to limit cycles that have a higher average effort (for both groups) than at

equilibrium. The fictitious play dynamics seems to converge to equilibrium in our empirical results.

Implications of our results. Our results show that it is crucial to take into account the strategic

nature of candidates involved in selection problem in order to understand discrimination and to

predict the effect of imposing a fairness mechanism. They also show that discrimination in selection

problems is a somewhat nuanced issue: it depends not only on the strategic aspect of the candidates

but also on the range of assumed rewards and on the cost of effort of the different demographic

groups. This means that a policy-maker, when considering whether to impose a fairness mechanism

in a particular application, should evaluate the population of candidates (their costs of effort,

etc.). It is worth noting, also, that we presented our results for a Bayesian decision-maker who

computes a posterior estimate of the candidates quality (with knowledge of the group-dependent

distributions). Our results are technically easy to extend to a group-oblivious decision-maker sorting

the candidates by quality estimate Ŵ irrespective of their group (another standard baseline); but in

that case the high-noise and low-noise groups are reversed (we discuss that in Section 7). Hence, a

policy-maker would also need to evaluate the baseline decision-maker they face.

Outline. The rest of the paper is organized as follows. In Section 2, we present the related literature.
In Section 3, we formulate the problem in a game-theoretic framework. In Section 4, we show that,

for the case of large rewards S , the selection with strategic candidates leads to underrepresentation

of one of the two groups of candidates. In Section 5, we study how demographic parity affects

the incentives of candidates and the expected quality of the selection for large S . In Section 6, we

complement our theoretical results by studying the convergence to equilibria and the case of small

and intermediate rewards S . We conclude with a discussion in Section 7.

2 RELATEDWORK
Statistical discrimination. The theory of statistical discrimination, initiated by Phelps [29]

and Arrow [3], considers the uncertainty of information about individual characteristics to explain

racial/gender inequality in decision-making. Phelps [29] develops a model where each individual

possesses a latent quality drawn from a fixed group-independent distribution. A Bayesian decision-

maker observes a noisy estimate of individual’s quality, where the noise is symmetric and zero-mean

but has a group-dependent variance. The decision-maker assigns a wage equal to the expected

posterior quality. This model is used to explain racial inequalities in wages. Lundberg and Startz

[24] extend Phelps’ model to a strategic setting by assuming two groups of workers that choose the

values of effort according to a group-independent quadratic costs. The effort induces a quality that is

assigned randomly but equal to the effort in expectation. The authors show that, in the equilibrium,

the high-noise candidates make lower effort and are payed less on average compared to the low-

noise candidates; but that if the decision-maker is restricted to not use the group information for

wage assignment, then the effort is equal for both groups. In our work, we use a similar model but

in the context of selection problems where a fraction of candidates receives a (fixed) reward rather

than assigning a variable wage to all candidates as in [24, 29]. We extend the model of Lundberg

and Startz [24] to have group-dependent cost-of-effort, which as we shall see has a crucial effect on

discrimination and we consider a different fairness mechanism (demographic parity).

Many statistical discrimination models (see e.g., [2, 3, 9] and a survey in [14]) assume that

individuals of different groups have identical a priori characteristics (e.g., cost-of-effort), but that
the decision-maker uses their group-dependent belief when there is imperfect information to assess

the performance of individuals in a group. In some cases, the discriminating beliefs (stereotypes) of



decision-makers lead to equilibria in which these stereotypes are fulfilled. In contrast, we consider

group-dependent cost-of-effort and group-dependent noise variance. We prove that the game in

our model attains a unique equilibrium, and that discrimination occurs due to the group-dependent

characteristics—i.e., if they become group-independent in our model, discrimination disappears.

Selection problems in the non-strategic settings. Recent literature investigate statistical dis-
crimination in selection problems, under the name of differential variance. Emelianov et al. [13]

show that differential variance, in the case of Bayesian decision-maker, leads to the underrepre-

sentation of the high-noise candidates (for selection fractions below 0.5). They also study how

quota-based fairness mechanisms (the 80%-rule and the demographic parity) affect the fairness-

utility tradeoff. Garg et al. [16] study a similar setting but where the performance of candidates is

measured by multiple independent and unbiased estimates (from tests). The authors study how

affirmative actions and access to testing affect the disparity level and the quality of the selected

cohort. Some works also study the selection problem under implicit bias rather than differential

variance—i.e., the decision-maker has a non-noisy but biased estimate of the candidates’ qualities.

Kleinberg and Raghavan [21] show that this type of bias naturally leads to underrepresentation of

the disadvantaged group, and they study how a fairness mechanism called the Rooney rule affects

the selection quality. This work is extended in [7, 8, 25]. Our work complements those studies by

assuming strategic candidates who can respond to a policy chosen by a Bayesian decision-maker.

Similarly to [16] and [13], we assume that the quality estimates are affected by differential variance,

but we do not model bias [21] as we assume a Bayesian decision-maker who can correct for the

bias. The main difference is that we assume that the quality distribution is not fixed but chosen by

candidates to maximize their payoff which equals to the expected reward minus the cost-of-effort.

Fairness in contests. A classical model of contest is given by Lazear and Rosen [22]: individuals

make a costly effortm that induces a noisy qualityW = f (m)+ ε , where f is an increasing function

of the effort; the player having the largest quality wins the prize S . Fairness in contest games was

studied from different perspectives in economics and computer science literature [15]. Schotter and

Weigelt [32] assume a two-player contest with a cost-advantaged and a cost-disadvantaged player—

each pays a quadratic cost-of-effort but with different coefficients. They show that, at equilibrium,

the cost-disadvantaged player makes a lower effort. Then they show that an affirmative action

(adding a bonus to the score of the cost-disadvantaged player) leads all players to make lower

efforts but increases the winning probability of the cost-disadvantaged player. Our model shares

similarities with that of [32] (in particular group-dependent quadratic costs), but also has important

differences: we consider an infinite population of candidates and we include group-dependent noise.

Our results are also different as we analyze the dependence on S and we study another fairness

mechanism (demographic parity)—in particular we find that it increases the effort of previously

underrepresented group and sometimes even of both groups.

Strategic ranking. Following the strategic classification literature (see previous section), Liu

et al. [23] study the strategic ranking problem. They assume that each individual has a latent ranking

and makes some costly effort to affect it. The effort induces a score д(effort)·f (latent fixed rank),

for some fixed strictly increasing functions f and д, which in turn results in a post-effort ranking.

Liu et al. [23] study how different ranking reward functions (with and without randomization) of a

fixed selection capacity c affect the characteristics of individuals and of the selection at equilibrium

(average welfare and scores). Finally, they consider a setting with two groups of candidates that

differ in a multiplicative parameter γ > 1 affecting the score and study the welfare gap for groups

as a function of c . In our model, we do not assume any pre-effort ranking—the score of an individual

is purely determined by the effort and by a group-dependent noise. Our model is simpler compared



to [23] and is designed to capture the effects of the group-dependent cost-of-effort and noise in

selection problems. This allows us to state concrete results involving the parameters of interest

(the cost coefficient and noise variance). We also consider how a fairness mechanism (demographic

parity) affects the group representations and the quality of selection at equilibrium.

3 THE MODEL
3.1 Candidates and decision-maker

Candidates model. We assume a non-atomic game with a unit mass of candidates indexed by

i ∈ [0, 1]. There are two groups of candidates: H and L. The letter G ∈ {H ,L} will denote any of

these two groups, and the proportion of candidates from groupG is pG ∈ (0, 1). Each candidate i
has a quality that depends on the effort mi that this candidate makes. In college admission or in

hiring, the effortmi of a candidate i can be interpreted as candidate’s achievements. It might, for

instance, represent the number of courses followed by a student, the quality of number of degrees

obtained, etc. We assume that a candidate i that chooses to make an effortmi ≥ 0 has a qualityWi
that is normally distributed with meanmi and variance η2

:

Wi ∼ N(mi ,η
2).

Making an effort m costs a candidate from group G a quadratic cost CGm
2/2. The population-

dependent cost coefficient CG can model socioeconomic factors like the income of the parents or

the country of origin; these factors might make harder for some candidates than others to make

the same effortm.

Decision-maker. A decision-maker wants to select the candidates having the largest qualities.

To do so, the decision-maker observes a noisy estimate Ŵi of the qualityWi of each candidate i:

Ŵi =Wi + σ̂Gi · εi ,

where εi is a zero-mean centered random variable from the standard normal distributionN(0, 1); the
noise variance σ̂ 2

Gi
is assumed group-dependent.

2
The quality estimate Ŵi is a noisy but unbiased

measurement of the qualityWi of a candidate i , e.g., an interview result. The group-dependent

variance of noise σ̂ 2

G models the information inequality: if interviewers are more familiar with

candidates of some demographic groups, they are more confident in their evaluation compared to

that of candidates of other groups. Without loss of generality, we assume that σ̂ 2

H > σ̂ 2

L . We, thus,

refer to H -candidates as high-noise candidates, and we refer to L-candidates as low-noise candidates.
We assume that the decision-maker knows

3
the effortm of all candidates, as well as the variances

η2
and σ̂ 2

G , and selects a proportion α ∈ (0, 1) of the candidates. The decision-maker aims at

maximizing the expected quality of selected candidates and, therefore, selects the α proportion

having the largest expected quality W̃ . Using the property of conditional expectation for bivariate

normal random variables, we can write the expectation of qualityWi given Ŵi as

W̃i = E(Wi |Ŵi ) = Ŵiρ
2

Gi
+ (1 − ρ2

Gi
)mi , (1)

where ρGi = η/
√
η2 + σ̂ 2

Gi
∈ [0, 1] is the correlation coefficient between the qualityWi and its

estimate Ŵi . Since W̃i is a linear function of Ŵi , and Ŵi is distributed normally, the expected quality

W̃i follows a normal distribution with meanmi and variance σ̃ 2

Gi
= η4/

(
σ̂ 2

Gi
+ η2

)
. Note that the

larger the value of noise σ̂ 2

Gi
, the more the values of W̃i are concentrated around its mean value

2
Note that, for simplicity, we assume that the variance of the quality η2

does not depend on the candidate’s group; Our

results can be extended to the case of group-dependent η2

G (see Section 7).

3
Our results can be extended to the case where the effortm is not observable (see Section 7).



mi (the smaller the variance σ̃ 2

Gi
). From (1), we observe that the decision-maker puts a higher

weight on the effortm for the high-noise candidates compared to the low-noise candidates: for the

same level of effort, the high-noise candidates will be seen by the decision-maker as having less

variability of expected quality compared to that of the low-noise candidates.

3.2 The population game
As the decision-maker selects the candidates having the largest expected quality, it will select all

candidates whose expected quality W̃ is larger than some selection threshold θ . We denote by

xG (m;θ ) the probability for a candidate of group G to be selected when their effort ism and the

selection threshold is θ . It equals:4

xG (m;θ ) = P

(
W̃ ≥ θ

)
= Φ

(
m − θ

σ̃G

)
, (2)

where Φ is the cumulative distribution function of the standard normal distribution N(0, 1).
We assume that each selected candidate receives a positive reward S , whereas the candidates

who are not selected get a reward of 0. Hence, the payoff uG of a candidate from population G is

uG (m;θ ) = S · xG (m;θ ) −CG ·m2/2. (3)

Given a selection threshold θ , each candidate strategically decides on the effortm that maximizes

their expected payoff uG (m;θ ). Following the classical definition [31], we call it a pure best response
and we denote the set of all pure best response strategies of a candidate as

bG (θ ) = {m such that ∀m′ ≥ 0 : uG (m;θ ) ≥ uG (m
′
;θ )} .

We say that the best response is unique if the set of best responses bG (θ ) is reduced to a singleton.

In such a case, by abuse of notation, we denote by bG (θ ) the unique best response.
Similarly, by βG (θ ) we denote the set of all mixed best responses of a candidate. It is the set of all

probability distributions over the set of pure best responses bG (θ ).

Selection threshold. For each populationG ∈ {H ,L}, we denote by µG the distribution of efforts

used by this population G. It is a probability distribution
5
on R+. We denote by µ = (µH , µL) the

effort distributions of the two populations. We denote the cumulative distribution function of the

expected quality W̃ induced by µG by FµG , and the cumulative distribution function of expected

quality of the total population by Fµ = pH FµH + pLFµL . The decision-maker selects the α-best

candidates. Hence, it will select all candidate whose expected qualityW̃ is above the (1−α)-quantile
of the distribution Fµ , that we denote by θ (µ) = F−1

µ (1 − α).

The game. The above definitions describe a population game between the candidates. We denote

the game by Gun
, where the superscript “un” emphasizes that the decision-maker is unconstrained,6

i.e., it selects the best α candidates based on the expected quality W̃ . Note that the game Gun
is

parameterized by the reward size S , the variance of quality η2
, the noise variances σ̂ 2

G , the cost

coefficients CG , and the selection size α .

3.3 Existence and uniqueness of the Nash equilibrium
We use the standard definition of Nash equilibrium for populations games [31]:

4
In the rest of the paper, to simplify the notation, we will drop the index i .

5
If all candidates of the population G make the same effort, µG is a pure strategy. Otherwise, µG is a mixed strategy.

6
In Section 5, we study a decision-maker faced with a fairness constraint (called demographic parity).



Table 1. Summary of notation.

Wi ∼ N(mi ,η
2) quality of candidate i

Ŵi =Wi + εi σ̂Gi quality estimate of candidate i (εi ∼ N(0, 1))

W̃i = E(Wi |Ŵi ) expected quality of candidate i
µG distribution of effort for the population G
µ = (µH , µL) distribution of effort for the total population

FµG CDF of the expected quality W̃ for the population G

Fµ = pH FµH + pLFµL CDF of the expected quality W̃ for the total population

α ∈ (0, 1) selection size

θ (µ) = F−1

µ (1 − α) selection threshold

pG proportion of G-candidates in the total population

xG (m;θ ) selection probability for a G-candidate with effortm given the threshold θ

Definition 1 (Nash eqilibrium). A pair of effort distributions µ = (µH , µL) is called an equilib-
rium of the game Gun if for all populations G ∈ {H ,L}, the support of µG is included in the set of best
responses bG (θ (µ)), where θ (µ) = F−1

µ (1 − α).

A Nash equilibrium is a situation where no candidate has an incentive to change its decision: if

the population plays µ, then the selection threshold will be θ (µ). Hence, a candidate of a group G
does not have an incentive to play a strategy that is not in b(θ (µ)). As the support of µG is included

in b(θ (µ)), this implies that all candidates cannot obtain a higher payoff by unilaterally changing

their decision.

In the rest of the paper, we will study the property of the Nash equilibrium of the game, which

exists and is unique as guaranteed by the following theorem.

Theorem 1. The game Gun has a unique Nash equilibrium, that we denote by µun = (µun

H , µ
un

L ).

We will also denote by θun = F−1

µun (1 − α) the selection threshold at equilibrium. Note that the

equilibrium and the selection threshold depend on the game parameters, including the reward

S . In the following, we will study the properties of the equilibrium as S grows. For simplicity of

exposition, we omit the dependency on S and write µun
or θun

instead of µun(S) or θun(S).
We provide a detailed proof of Theorem 1 in Appendix A.4 whose main ingredient is to show

that there is a one-to-one mapping between the equilibria of the game and the fixed points of a

multi-valued function T :

T (θ ) = {F−1

µ (1 − α) : µG ∈ βG (θ )}. (4)

This simplifies the problem, as now we need to study the fixed points of a function of a single

variable. By studying the first derivative ofT , we show that the functionT has a unique fixed point

and, hence, the defined game has also a unique equilibrium.

3.4 Summary of main notation
We summarize the main notation in Table 1. Recall that, without loss of generality, we assume

that σ̂ 2

H > σ̂ 2

L (which also implies that σ̃ 2

H < σ̃ 2

L). We, thus, refer to H -candidates as high-noise,
and we refer to L-candidates as low-noise. To refer to the group with higher/lower cost-of-effort,

we use the names cost-disadvantaged/cost-advantaged. If, for example, CH > CL , then we say that

H -candidates are cost-disadvantaged and that L-candidates are cost-advantaged.



4 EQUILIBRIUM CHARACTERIZATION AND RESULTING DISCRIMINATION
In this section, we characterize the equilibrium of the game for large

7
rewards S . We consider the

case of large S as it models the competition in selection procedures with high stakes, e.g., hiring

CEOs or college admission to high-ranked schools.

4.1 Properties of the best response
We start with the characterization of the best response bG (θ ) of a candidate. In Lemma 1 (whose

proof is deferred to Appendix A.2), we show that, when S is large, the best response bG (θ ) is unique
for all thresholds θ , except one, that we call a dropout threshold θd

G . We show that the value of

the best response bG (θ ) increases with the threshold θ until the latter reaches θd

G ; it then drops

down and decreases when θ ≥ θd

G . This means that when the selection threshold θ is too high,

the candidates lose incentives to make any effort. To emphasize the dependency of the dropout

threshold on the reward S , we write θd

G (S).

Lemma 1 (Best reponse for large S). There exists S0 such that for all rewards S ≥ S0, there exists
a threshold θd

G (S), called the dropout threshold, such:

(i) When the selection threshold isθ = θd

G (S), there are two pure best response strategies:bG (θ
d

G (S)) ={
bmin

G

(
θd

G (S)
)
,bmax

G

(
θd

G (S)
)}
. They satisfy:

lim

S→∞
bmin

G

(
θd

G (S)
)
= 0, lim

S→∞

bmax

G

(
θd

G (S)
)

θd

G (S)
= 1.

(ii) For all θ , θd

G (S), the pure best response bG (θ ) is unique. Moreover, for any γ ∈ (0, 1), we have

lim

S→∞
bG

(
θd

G (S)/γ
)
= 0 and lim

S→∞

bG
(
γθd

G (S)
)

θd

G (S)
= γ .

Using the notation for asymptotic equivalence, we can write the statement of the theorem in

a simpler form. For example, from the second part of (ii), we can infer that bG (γθ
d

G ) ∼ γθd

G for

any γ ∈ (0, 1). Therefore, the above lemma shows that for a given candidate, the best response

bG (θ ) increases essentially linearly up to the dropout threshold θd

G , and then drops to 0 when the

selection threshold is too high, i.e., θ > θd

G . We will illustrate this later in Fig. 1.

Note that the dropout threshold θd

G is group-dependent. As we will see later in Section 4.3, the

most represented group at equilibrium will be the one having the largest dropout threshold. Hence,

in Lemma 2, we show the asymptotic behavior of the dropout threshold as a function of S . As we
expect, the dropout threshold increases with the reward S , and decreases with the cost coefficient

CG . A less intuitive property is its relation with the noise variance σ̂ 2

G : we show that the dropout

threshold increases as the noise variance σ̂ 2

G increases. Lemma 2 is proven in Appendix A.3.

Lemma 2 (Dropout threshold for large S). Let θd

G (S) be the dropout threshold.
(i) For any CG and G, the dropout threshold can be expressed as

θd

G (S) =
√

2S/CG (1 + o(1)) as S → ∞.

(ii) If CH = CL and σ̂ 2

H > σ̂ 2

L , then there exists S0 such that for all S ≥ S0, θd

H (S) > θd

L(S).

From (i), we conclude that the dependency of the dropout threshold θd
on the cost coefficientsCG

is of higher order than the dependency on the noise variance σ̂ 2

G . In other words, whenCH > CL , we

have θd

H (S) < θd

L(S) for large enough S , regardless of the noise variance σ̂
2

G . When both groups have

7
In Section 6.2, we show theoretical and numerical results for small and intermediate rewards S .



equal cost coefficients (CH = CL), the noise variance matters, and θd

H (S) > θd

L(S) when σ̂ 2

H > σ̂ 2

L (or,

equivalently, when σ̃ 2

H < σ̃ 2

L).

4.2 Equilibrium strategy
As we show in the previous section, the dropout threshold θd

G is an important characteristics of

candidates’ best response: for thresholds θ smaller than the dropout threshold θd

G , the candidates

make an effort proportional to the threshold whereas for thresholds larger than the dropout, the

candidates make nearly zero efforts. In Theorem 2 given below, we prove that, for large rewards,

the selection threshold at equilibrium is equal to the dropout threshold of one of the two groups.

Note that this theorem is not stated in terms of the groups H and L but in terms of groups G1

and G2, where G1 is the group that has the largest dropout threshold, which holds if C1 < C2 or

(C1 = C2 and σ̂
2

1
> σ̂ 2

2
). Hence, the populationG1 can correspond to the population L if CH > CL (it

corresponds, otherwise, to the population H as we assumed that σ̂ 2

H > σ̂ 2

L).

Theorem 2 (Eqilibrium strategies). Fix α ∈ (0, 1) and two populations of candidates, G1 and
G2, such that (C1 < C2) or (C1 = C2 and σ̂ 2

1
> σ̂ 2

2
). Then, there exists a reward S0 such that for S ≥ S0:

(i) If α ≤ p1, then the equilibrium threshold θun(S) is θd

1
(S). In this case:

• TheG1-candidates play a mixed strategy that consists in playing bmax

1
with probability τ1 and

bmin

1
, with probability 1 − τ1, where limS→∞ τ1 = α/p1.

• The G2-candidates play the pure strategy b2(θ
d

1
(S)) and limS→∞ b2(θ

d

1
(S)) = 0.

(ii) If α > p1, then the equilibrium threshold θun(S) is θd

2
(S). In this case:

• The G1-candidates play the pure strategy b1(θ
d

2
(S)) and limS→∞ b1(θ

d

2
(S))/θd

2
(S) = 1.

• TheG2-candidates play a mixed strategy that consists in playing bmax

2
with probability τ2 and

bmin

2
with probability 1 − τ2, where limS→∞ τ2 = (α − p1)/p2.

Proof Sketch. To simplify notation, we omit the dependence on S for all variables. Let us prove

that the dropout threshold θd

1
is the fixed point of T for the case (i). We specify the efforts made in

response to θd

1
, and we show that they lead to the same selection threshold θd

1
, i.e., θd

1
is the fixed

point of T . The case (ii) can be proven similarly; we provide the complete proof in Appendix A.5.

We can show that, as S → ∞, we have xmax

G B xG (b
max

G (θd

G );θ
d

G )
S→∞
−−−−→ 1 and xmin

G B

xG (b
min

G (θd

G );θ
d

G )
S→∞
−−−−→ 0 for all G ∈ {G1,G2}.

If α ≤ p1, then, assume that G1-candidates randomize their strategy by playing bmax

1
with the

probability τ1 and b
min

1
with the probability 1−τ1. TheG2-candidates play the deterministic strategy

b2(θ
d

1
)

S→∞
−−−−→ 0. The probability τ1 can be found from the budget constraint: α = p1(τ1x

max

1
+

(1 − τ1)x
min

1
) + p2x2(θ

d

1
,b2(θ

d

1
))

S→∞
−−−−→ p1τ1, so τ1

S→∞
−−−−→ α/p1. The defined strategies satisfy the

budget constraint, so θd

1
is the fixed point of T and, hence, the defined distribution of effort is the

equilibrium of the game Gun
. □

Fig. 1 illustrates the results of Theorem 2. In Fig. 1a, we show the case of group-dependent noise

but group-independent cost coefficient (CH = CL). In this case, the H -candidates have a higher

dropout threshold compared to the L-candidates, hence, for θd

L < θ ≤ θd

H , the H -candidates make a

non-zero effort while the L-candidates make a nearly-zero effort. In our illustration, the selection

size α = 0.1 is smaller than the proportion of H -candidates pH = 0.5. We can verify that for θ = θd

H ,

if a proportion α/pH of H -candidates plays bmax

H , and the rest of H -candidates plays bmin

H , then

such a strategy satisfies the budget constraint. Hence, θd

H is the fixed point of the function T , so

θun = θd

H .
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Fig. 1. Best response functions and the Nash equilibrium for S = 10, CL = 1, σ̃H = 0.1 and σ̃L = 1, pH = 0.5

and α = 0.1. Both figures illustrate the case (i) of Theorem 2. The dotted line on the uppermost panels is the
identity function id(θ ) = θ .

In Fig. 1b, we illustrate the case of group-dependent cost coefficient (CH > CL). In this case, the L-
candidates have a higher dropout threshold compared to the H -candidates, hence, for θd

H < θ ≤ θd

L ,

the L-candidates make a non-zero effort while H -candidates make a nearly-zero effort. For the

purpose of illustration, we again assume that the selection size α = 0.1 is smaller than the proportion

of L-candidates (pL = 0.5). Similarly to the previous case, we can verify that for θ = θd

L , if a

proportion α/pL of L-candidates plays bmax

L , and the rest of L-candidates plays bmin

L , then this

strategy satisfies the budget constraint, so θun = θd

L .

4.3 Discrimination due to the group-dependent variance and cost
In Theorem 2, we show that the equilibrium distribution of effort µun

depends on the relation

between the dropout thresholds θd

G for different populations, H and L. We now study how the

noise variance σ̂ 2

G and the cost coefficient CG affect the representation of groups in the selection at

equilibrium. Overall, we show that the group-dependent noise variance and the group-dependent

cost coefficient can both lead to underrepresentation of some group of candidates at equilibrium.

For a given populationG , we denote by µ̄un

G the average effort that candidates from groupG exert

at equilibrium, and we denote by x̄un

G the selection rate which is the probability for a randomly

chosen candidate from group G to be selected. Since xG (m;θ ) is the probability for a G-candidate
to be selected when exerting an effortm (see (2)), these quantities satisfy:

µ̄un

G =

∫
m≥0

mdµun

G (m); x̄un

G =

∫
m≥0

xG (m;θun)dµun

G (m).

We say that the group H (or L) is underrepresented if x̄H < x̄L (or x̄L < x̄H ). Note that when we say

“underrepresented’, it means that a demographic group has less representation in the selection than

its share in the population of all candidates. This definition is not conditioned on the assumption

that the mean of the qualitiesW is the same for both groups, but this assumption does make the

notion of demographic parity more obviously appealing since there is no a priori distinction in the



average quality between the groups. Nevertheless, we do not claim that demographic parity would

be justified only under this assumption.

In Theorem 3 below, we show that if the cost coefficientCG is group-independent (CH = CL), then

the high-noise H -candidates make a larger effort compared to that of the low-noise L-candidates,
and the latter are underrepresented. However, if the cost coefficient is group-dependent (CH , CL),

the noise variance does not play a role if the reward S is large enough: the cost-advantaged

candidates make larger effort compared to that of the cost-disadvantaged candidates, and as a result,

the latter are underrepresented. This theorem also shows that, as S goes to infinity, the ratios of

efforts and selection rates can grow unbounded. For example, in the case (i) of Theorem 3, if there

are enough H -candidates to fill the selection budget α , then L-candidates will asymptotically not

be selected when S goes to infinity. We will see in Section 6.2, that for moderate values of reward S ,
the L-candidates still have some representation in the selection, but that can be very small.

Theorem 3 (Discrimination for large rewards S). Let µun

H and µun

L , xun

H and xun

L be the
equilibrium effort distributions and selection rates of the game Gun.

(i) If CH < CL or if CH = CL and σ̂ 2

H > σ̂ 2

L , then there exists S0 such that for all S ≥ S0 the
high-noise H -candidates make greater effort compared to the low-noise L-candidates, and the
latter are underrepresented:

lim

S→∞

µ̄un

L

µ̄un

H
= lim

S→∞

x̄un

L

x̄un

H
=

{
0 if pH ≥ α ,
α−pH
1−pH

< 1 if pH < α .

(ii) If CH > CL , then there exists S0 such that for all S ≥ S0 the cost-advantaged L-candidates
make a greater effort compared to the cost-disadvantaged H -candidates, and the latter are
underrepresented:

lim

S→∞

µ̄un

H

µ̄un

L
= lim

S→∞

x̄un

H

x̄un

L
=

{
0 if pL ≥ α ,
α−pL
1−pL

< 1 if pL < α .

Proof. To prove (i), we compute the average effort and the selection rate given the equilibrium

mixed strategies defined in Theorem 2. We consider the case of α ≤ pH and the case of α > pH
separately.

If α ≤ pH , then µ̄un

H = bmax

H τH + b
min

H (1 − τH ) = α/pH ·
√

2S/CH (1 + o(1)), S → ∞ and µ̄un

L =

bL(θ
d

H )
S→∞
−−−−→ 0, so µ̄un

L /µ̄un

H
S→∞
−−−−→ 0. Similarly, the expected selection rates for H - and L-candidates:

x̄un

H = xmax

H τH + x
min

H (1 − τH )
S→∞
−−−−→ α/pH ,

x̄un

L = xL(θ
d

H ,bL(θ
d

H ))
S→∞
−−−−→ 0,

which implies that x̄un

L /x̄un

H
S→∞
−−−−→ 0.

If α > pH , then we, again, consider the strategies in the equilibrium:

µ̄un

H = bH (θ
d

L) =
√

2S/CL(1 + o(1)), S → ∞,

µ̄un

L = b
max

L τL + b
min

L (1 − τL) = (α − pH )/pL ·
√

2S/CL(1 + o(1)), S → ∞.

Similarly, for the selection rates, we have: x̄un

H = xH (θ
d

L,bH (θ
d

L))
S→∞
−−−−→ 1, and x̄un

L = xmax

L τL +

xmin

L (1 − τL)
S→∞
−−−−→ (α − pH )/pL . The proof of (ii) is identical to the proof of (i) so we omit it. □



5 EFFECTS OF THE DEMOGRAPHIC PARITY MECHANISM ON THE SELECTION
In Theorem 3, we show that the equilibrium in the game Gun

leads to underrepresentation of

one of the groups of candidates: for the group-independent cost coefficient (CH = CL), the low-

noise candidates are underrepresented; for the group-dependent cost coefficient (CH , CL), the

cost-disadvantaged candidates are underrepresented.

To reduce the inequality of representation, colleges (and employers) sometimes perform affirma-
tive actions. This can take the form of quotas for low-income or minority groups or any forms of

promotions. Among those affirmative actions are ones that make sure that the selection rates for

the groups are close, meaning that the proportions of both groups in the selection should be close

to proportions of the groups in the total population. The strongest condition among those is the

demographic parity (see [4]) which requires that selection rates for both populations must be equal:

x̄H = x̄L . This implies, given the budget constraint x̄HpH + x̄LpL = α , that x̄H = x̄L = α .

5.1 The game with the demographic parity mechanism
The demographic parity mechanism removes the competition among the groups of candidates, H
and L, as from each group G a proportion α ∈ (0, 1) must be accepted. Hence, the game with the

demographic parity mechanism, that we denote by Gdp
, can be represented as two independent

games, Gun

H and Gun

L , each defined for a single group, H or L. Note that for this game, the selection

thresholds will be different for the two groups: for a group G, the decision-maker will select all

candidates whose expected quality is greater or equal than θ (µG ) = F−1

µG (1 − α), which corresponds

to the α best fraction of this group—it is the quantile of the distribution of expected qualities

induced by µG and not the one induced by µ as in the unconstrained case.

The equilibrium of the game Gdp
where the Bayesian decision-maker has a demographic parity

constraint is defined as follows.

Definition 2 (Nash eqilibrium of the game Gdp
). A pair of effort distributions µ = (µH , µL) is

an equilibrium of the game with the demographic parity constraint Gdp if for both groupsG ∈ {H ,L}:

µG ∈ βG (θ (µG )), where θ (µG ) = F−1

µG (1 − α).

Mimicking the unconstrained case, we denote by µdp = (µ
dp

H , µ
dp

L ) the equilibrium of this game,

and by θ
dp

G = F−1

µdp

G

(1−α) the group-dependent equilibrium selection threshold. The superscript “dp”

emphasizes that the decision-maker is demographic parity-constrained.
Since the game Gdp

can be represented as two separate games, Gun

H and Gun

L , that has a unique

Nash equilibrium according to Theorem 1, the game Gdp
also has a unique Nash equilibrium.

5.2 Efforts induced by the demographic parity mechanism
In the previous section, we showed that, for large rewards S , it is possible that only one of the

two groups makes a positive effort while the other group considers that the game is not worth

playing because of a too unfair competition. The situation is radically different with demographic

parity mechanism as each candidate competes with similar candidates. As we show below, the

demographic parity mechanism pushes the previously underrepresented group to make more effort

than before. Moreover, it can also push the previously overrepresented group to make more effort.

In the first theorem below, we characterize the equilibrium strategy of the game with the

demographic parity mechanism Gdp
. This result is a direct corollary of Theorem 2 as we consider

two separated games with an unconstrained decision-maker.

Theorem 4 (Eqilibrium strategy with the demographic parity mechanism). There exists
S0 such that for all S ≥ S0, the equilibrium of the game with the demographic parity mechanism Gdp



is a pair of distributions µdp = (µ
dp

H , µ
dp

L ) where for each group G ∈ {H ,L}, µdp

G consists in playing
bmax

G with probability τG and bmin

G with probability 1 − τG , where limS→∞ τG = α .

Proof. According to the demographic parity mechanism, the selection rate per each group G
must be equal to x̄G = α . Hence, this theorem can be seen as a special case of Theorem 2 but with

a single group of mass 1 out of which we need to select the best α ∈ (0, 1). By applying directly the

result of Theorem 2, we show that the proposed strategy is the equilibrium strategy. □

In Corollary 1 given below, we compare the efforts made by two groups at equilibrium. We

show that, if the cost coefficient is group-independent, then the demographic parity mechanism

equalizes the effort as S grows (together with the selection rates as x̄
dp

H = x̄
dp

L by definition). For

group-dependent cost coefficient, the cost-disadvantaged H -candidates make lower average effort

compared to that of L-candidates yet the average effort ratio is bounded by

√
CH /CL . This is in

contrast to Section 4.3 where we show that the average effort ratio can be unbounded in the case

of the unconstrained decision-maker.

Corollary 1 (Eqilibrium effort ratio in Gdp
). Let µdp

H and µ
dp

L be the equilibrium effort
distributions in the game with the demographic parity mechanism Gdp. The average efforts of both
populations G ∈ {H ,L} satisfy:

lim

S→∞

µ̄
dp

H

µ̄
dp

L

=

√
CL

CH
.

In particular, if CH = CL , then the average efforts of both populations grow at equal rates. If CH , CL ,
then the cost-disadvantaged candidates make a lower average effort compared to that of the cost-
advantaged candidates.

Proof. Using the equilibrium strategies of the game with the demographic parity mechanism

Gdp
from Theorem 4, we show that: limS→∞

µ̄dp

H

µ̄dp

L

= limS→∞
τHbmax

H +(1−τH )bmin

H
τLbmax

L +(1−τL )bmin

L
=

√
CL
CH
. □

By reducing the competition between groups, affirmative action policies are often criticized

because they might encourage individuals to make less effort, which reduces the overall quality of

the selected candidates. We show below that, in fact, the demographic parity mechanism always

encourages the previously underrepresented group to make a larger effort than in the unconstrained

case. For the previously overrepresented group, the situation varies: in many situations, the can-

didates from the overrepresented group will make a lower effort than in the unconstrained case,

but when

√
CL/CH < α and α > pL , we show that they make a higher effort compared to that of

the unconstrained case. Note that the last result may seem rather counterintuitive as demographic

parity reduces the competition between groups. Later, in Section 5.3, we show the implications of

this result on the average quality of the selected candidates.

Corollary 2 (Eqilibrium effort ratio in Gun
vs. Gdp

). Let µun

H and µun

L be the equilibrium
effort distributions in the unconstrained game Gun. Similarly, let µdp

H and µdp

L be the equilibrium effort
distributions in the game with the demographic parity constraint Gdp.

(i) If CH = CL and σ̂ 2

H > σ̂ 2

L , then

lim

S→∞

µ̄un

H

µ̄
dp

H

=

{
1/pH if α ≤ pH ,

1/α if α > pH ,
and lim

S→∞

µ̄un

L

µ̄
dp

L

=

{
0 if α ≤ pH ,
α−pH
α−αpH

if α > pH .



(ii) If CH > CL , then

lim

S→∞

µ̄un

H

µ̄
dp

H

=

{
0 if α ≤ pL,
α−pL
α−αpL

if α > pL,
and lim

S→∞

µ̄un

L

µ̄
dp

L

=

{
1/pL if α ≤ pL,√

CL
CH

1

α if α > pL .

Proof Sketch. Similarly, as in the proof of Corollary 1, we calculate the limits by using the

equilibrium strategies found in Theorem 2 and in Theorem 4. The full proof is in Appendix A.6. □

5.3 Selection quality with and without the demographic parity mechanism
We now show the implication of the previous result on how the demographic parity mechanism

affects the selection quality. In a non-strategic setting (see e.g., [13]), the unconstrained decision

maker is optimal in expectation. We show here that this no longer holds in the strategic setting:

there exist scenarios under which the Bayesian decision-maker is not optimal in terms of the expected

quality of selection. In such settings, the demographic parity constraint leads to a more qualified

cohort. This counterintuitive phenomenon is due to the fact that demographic parity induces less

competition between groups but a more fair competition within each group (compared to the

unconstrained case).

We denote by Qun
and by Qdp

the expected quality at equilibrium of the selected candidates

for the unconstrained and the demographic parity constrained games. In the theorem below, we

characterize the ratio of the equilibrium cohort qualities by the unconstrained decision-maker from

Section 4, and the demographic parity constrained decision-maker that we study in this section.

For group-independent cost coefficient (CH = CL), we show that the quality ratio Qun/Qdp
tends to

1 in the limit of large S . For group-dependent cost coefficient (CH , CL), we show that the quality

ratio can be smaller than one—the Bayesian decision-maker is not optimal if the candidates are

strategic, and the demographic parity mechanism can lead to a better-qualified cohort.

Theorem 5 (Selection qality ratio for Gun
and Gdp

). Let Qun and Qdp be the expected
qualities of selection at equilibrium of the game Gun and of the game Gdp, respectively.

(i) IfCH = CL , then the ratio of the expected quality given by the unconstrained and the demographic
parity constrained decision-makers tends to one with S : limS→∞

Qun

Qdp
= 1.

(ii) IfCH > CL , then the ratio of the expected quality given by the unconstrained and the demographic
parity constrained decision-makers can be smaller than one. Formally, for c =

√
CL/CH :

lim

S→∞

Qun

Qdp

=

{
1

cpH+pL
> 1 if pL ≥ α ,

c
cpH+pL

< 1 if pL < α .

Proof Sketch. First, we prove that as S → ∞, the expected quality of the selected cohort grows

at equal rate with the expected effort: E(WG · [W̃G ≥ θ ]) ∼ µ̄G . Hence, using the equilibrium

strategies from Theorem 2 and Theorem 4, we can estimate the ratioQun/Qdp
in the limit of S → ∞.

The complete proof is given in Appendix A.7. □

We emphasize that the condition under which the demographic parity mechanism improves the

average selection equality is when the selection rate α is larger than the size of the cost-advantaged

group. The improvement of selection quality due to the demographic parity mechanism is explained

by the fact that, without the demographic parity constraint, the advantaged minority has no

incentives to make a large effort because the competition includes a lot of cost-disadvantaged

candidates. Once the competition is among candidates of each separate populations, the cost-

advantaged candidates have to compete with other cost-advantaged candidates, so they have to

make a larger effort to be selected.



The demographic parity can decrease the average selection quality when α ≤ pL and when

both groups have different cost coefficients CG . In this case, if the low-noise L-candidates are the
majority, then the ratio of quality Qun/Qdp

cannot be larger than 2 as S goes to infinity, regardless

of the cost coefficients.

6 COMPLEMENTARY RESULTS
In the previous sections, we studied the properties of the Nash equilibrium of the game for large

rewards S and showed that they can lead to discriminations. In this section, we complement this

theoretical analysis by studying two (essentially independent) problems: First, does the population

converge to the equilibrium? Second, what happens when the reward S is not large?

6.1 Convergence to the Nash equilibrium
To answer the first question, we perform a series of numerical experiments in which the decisions

are made repeatedly. At a given time t , the candidates consider past data to make a strategic decision.

This could represent, for instance, the case of college admission where candidates consider the

distribution of grades from previous years; in this example, each decision epoch is a different year.

We study two population dynamics: best response and fictitious play.
• For the best response dynamics, at each of the discrete times t ∈ {1, 2, . . . ,T }, the candidates
observe the strategy played at the previous time step µ(t−1)

and play a best response to it:

m(t )
G ∈ bG (θ (µ

(t−1))).

• For the fictitious play dynamics, at each of the discrete times t = 1, 2, . . . ,T , the candidates
observe the whole history of plays and assume that the distribution of efforts is the empirical

distribution of effort from time 1 to T . Candidates then play a best response to it:

m(t )
G ∈ bG (θ (µ̂

(t ))),

where θ (µ̂(t )) = F−1

µ̂(t ) (1 − α) and µ̂(t ) =
∑t−1

s=1

1

t−1
µ(s)

.

We numerically evaluate these two policies and report the results in Fig. 2. For the best response

dynamics, we observe thatm(t ) = (m(t )
H ,m

(t )
L ) converges to a limit cycle for any starting point. This

is because when S is large,
8
the best response map is not continuous (recall Fig. 1). The period of the

limit cycle increases with the reward size S but the behavior is similar for all S : starting from (0, 0),
the candidates from both populations increase the effort as time increases. Then, the competition

becomes too high and one of the populations drops out, i.e., make almost zero effort. After, the

competition is only among the candidates of a single population until it becomes too difficult and

all candidates drop out and return to the initial state. The cycle ends here, and the new cycle starts.

In Fig. 2a and 2b, we also plot the average trajectory m̄(t ) = (m̄(t )
H ,m̄

(t )
L ), where m̄(t )

G =
1

t−1

∑t−1

s=1
m(s)

G .

We observe that the average over the trajectory seems to converge, yet the average effort over the

trajectory is significantly larger than that of the average equilibrium effort for both groups.

The case of fictitious play dynamics is different, and it is depicted in Fig. 2c and 2d. In this

case, the empirical distribution of efforts does converge to the Nash equilibrium. This is illustrated

on the figure by the fact that the empirical average of effort converges to the average value of

effort of the Nash equilibrium: m̄(t )
G

t→∞
−−−−→ µ̄un

G for both groups G ∈ {H ,L}. Note that this is not a
pointwise convergence but rather a convergence to a cycle: at equilibrium, the strategy played by

the L-candidates converges to a cycle on the values bmin

L and bmax

L .

8
For S < 1

2
CG σ̃ 2

G /ϕ(1) we can show that the function T is a contraction mapping, so any trajectory of the best response

dynamics converges to the Nash equilibrium.
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Fig. 2. Best response (BR) and fictitious play (FP) dynamics for different rewards S . The parameters of
simulations are T = 500, CH = 1.5, CL = 1, pH = pL = 0.5, α = 0.1, σ̃H = 0.6 and σ̃L = 1.

6.2 Selection problems with small and intermediate rewards
We start with the case of small rewards S < CG σ̃

2

G/ϕ(1) for which the results are quite different

from the ones obtained for large S in Section 4. We show that the cost ratio CL/CH , as well as the

expected quality variance ratio σ̃ 2

L/σ̃
2

H , play significant roles in the outcome of the game. If the

cost for the H -candidates is too high compared to that of the L-candidates, then the H -candidates

make lower effort for all selection sizes α . Otherwise, if the cost for H -candidates is comparable

to that of L-candidates (e.g., CH = CL) or it is lower, then for both small and large selection sizes

α , the high-noise H -candidates make less effort compared to that of low-noise L-candidates. For
both cases, there exists a parameter dependent value of α0 such that for all values of α ≤ α0, the

high-noise H -candidates are underrepresented. Interestingly, in (ii) of Theorem 6, we also observe

that it is possible that H -candidates make a larger effort than L-candidates, yet they are selected at

a lower rate, x̄un

H < x̄un

L .

Overall, the high-level interpretation of the below result is that for small enough rewards S and
for small enough values of α , the high-noise H -candidates are always underrepresented. This result
is in contrast with the results for large S studied in Section 4, and it is similar to the result in the

non-strategic setting studied in [13, 16].

Theorem 6 (Discrimination for small rewards S). Assume that S < CG σ̃
2

G/ϕ(1) for all
G ∈ {H ,L}. Let µun

H and µun

L , xun

H and xun

L be the equilibrium efforts and selection rates of the game Gun.

Denote Kµ B

√
−2 ln(CH σ̃H /(CL σ̃ L ))

1/σ̃ 2

H−1/σ̃ 2

L
and Kx B

√√
W

(
S2

(
1

CH σ̃H
− 1

CL σ̃ L

)
2

2π (σ̃ L−σ̃H )2

)
, where W is the Lambert

function defined as the inverse to the function f (λ) = λeλ and Φc is the complementary cumulative
distribution function of the standard normal distribution N(0, 1).

(i) If CH σ̃H > CLσ̃ L , then µ̄un

H < µ̄un

L for all α ∈ (0, 1), and x̄un

H < x̄un

L if and only if α < Φc (−Kx ).
(ii) If CH σ̃H ≤ CLσ̃ L , then

µ̄un

H < µ̄un

L ⇐⇒ α ∈
©«0,

∑
G ∈{A,B }

pGΦ
c (
Kµ/σ̃G

)ª®¬ ∪ ©«
∑

G ∈{A,B }

pGΦ
c (
−Kµ/σ̃G

)
, 1

ª®¬ ,
x̄un

H < x̄un

L ⇐⇒ α < Φc (Kx ) .

Proof Sketch. We show that for S < CG σ̃
2

G/ϕ(1) the best response in pure strategies is unique,

hence the equilbirium effort distribution is a singleton µun

G = δ (m −mun

G ). Note that the first-order
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Fig. 3. Characterization of the equilibrium for different rewards S . The parameters of simulations are CL = 1,
pL = 0.5, σ̃H = 0.6 and σ̃L = 1.

condition on a maximum of the payoff function uG is also a sufficient condition; it can be written:

S

σ̃G
ϕ

(
mun

G − θun

σ̃G

)
−CGm

un

G = 0 ⇐⇒ mun

G =
S

CG σ̃G
ϕ

(
mun

G − θun

σ̃G

)
.

Since we aim to find a value of α whenmun

H =m
un

L , we equate the right-hand sides of the above

equation for two groups, and, by solving this equation, we obtain the values of θun −mun

G . By

substituting this expression to the budget constraint, we derive the value of α at whichmun

H =m
un

L :

α =
∑

G ∈{H,L }

pGΦ
c
(
θun −mun

G

σ̃G

)
.

The proof for xun

G is similar to that ofmun

G . A complete proof is given in Appendix A.8. □

Intermediate rewards. To conclude our analysis, we fill the gap between our theoretical results

for the cases of small and large rewards S using numerical simulations.
9
We perform our numerical

simulations for the values of reward S = 1, 10, 100, 1000. The simulation result for S = 1 is studied

theoretically in the first part of this section, as S = 1 satisfies the condition S < CG σ̃
2

G/ϕ(1). The
result for S = ∞, studied in Section 4 and Section 5, is represented in Fig. 3 using a black solid line.

We plot the ratio of x̄un

L /x̄un

H for the case of group-independent cost coefficient in Fig. 3a, the

ratios of x̄un

H /x̄un

L andQun/Qdp
for the case of group-dependent cost coefficient in Fig. 3b and Fig. 3c.

Overall, we observe a relatively smooth transition between the two regimes of S in all figures. In

addition, the behavior for S = 100 and for S = 1000 is quite close to the behavior for S = ∞.

7 CONCLUDING DISCUSSION
In this work, we propose a simple model of selection with strategic candidates who are faced with

group-dependent cost-of-effort and group-dependent noise variance. We characterize the resulting

discrimination at equilibrium as well as the impact of removing it through the demographic parity

mechanism that mandates equal representation across groups. Note that, in the context of our

strategic model, demographic parity is not the only fairness notion that might make sense, and one

could be tempted to consider, for instance, ameritocratic notion of fairness (where the representation

would be commensurate with the effort). However, it remains important to understand the impact

of imposing demographic parity as it is one of the most commonly used fairness notions.

9
The code can be found at https://gitlab.inria.fr/vemelian/strategic-selection-code.

https://gitlab.inria.fr/vemelian/strategic-selection-code


Throughout the paper, we made several simplifying assumptions, often to make the results easier

to state and understand and to better isolate the effect of strategic behavior. Our work can be

extended, however, in multiple ways:

Group-dependent variance of quality. We assumed that the variance of latent qualities is group-

independent, i.e., η2

H = η2

L = η2
. This assumption can easily be removed, as all the results can

equivalently be stated for σ̃ 2

H and σ̃ 2

L evenwith group-dependent variance.Wemake this assumption

only for simplicity of exposition since it implies that σ̃ 2

H < σ̃ 2

L if and only if σ̂ 2

H > σ̂ 2

L .

Unobservable effort. In our model, we assume that the effort m is observable to the decision-

maker. If the effortm is not observable, we argue that the decision-maker performs the selection

based on the noisy estimate Ŵ rather than the posterior expectation W̃ (which corresponds to the

group-oblivious decision-maker in the terminology of [13]). All the results from this paper still hold

but we need to replace the variance of the expected qualities σ̃ 2

G by the variance of the estimate

η2 + σ̂ 2

G . Note that most of the statements will be reversed as σ̃ 2

H < σ̃ 2

L if and only if σ̂ 2

H > σ̂ 2

L . In

this case, the high-noise group has a higher variance of estimate, and the low-noise group has a

lower variance of estimate. Hence, when the low-noise group is underrepresented in our model,

the low-noise group is overrepresented in the model with unobservable effort.

More than two groups of candidates. In our model, we assume two groups of candidates, yet the

results can be extended to more than two groups (e.g., in the proof of uniqueness of the equilibrium

we do not rely on the fact that the number of populations is two). This additional dimension would

simply add more interactions between the groups and complicate the statement of the results. For

instance, in the case of multiple groups where two of them are subject to equal cost coefficients,

we expect that the sorting will be with respect to the noise for these two groups, and with respect

to the cost coefficients for the rest of the groups.

Monomial cost function and non-Gaussian noise. In our model, we assume a quadratic cost and

Gaussian noise. We believe that these results will not change much if we assume other symmetric

noise and monomial cost functions, i.e.,CGm
dG

. In this case, we expect that the best response could

be characterized by a dropout threshold, as in our model. In addition, the power dG of the monomial

would be another important feature of the model: if it is group-dependent, then we expect that the

dropout threshold will grow as (S/CG )
1/dG

and the candidates with higher dG will drop out earlier,

independently on the relations of CG and σ̃ 2

G .

Other models of candidate’s utility. In our model, we assume rational risk-neutral candidates

faced with different costs of efforts, and we also assume a risk-neutral Bayesian decision-maker.

In non-strategic settings (see e.g., [13]), such a decision-maker is proven to be Bayesian-optimal,

yet we prove that it is not optimal in the strategic setting. In our model, we do not consider other

barriers for candidates as, for example, self-selection. To model self-selection, we can assume that

there is a minimal threshold θ self

G that each candidate should pass. The outcome of the equilibrium

would then depend on the relation between θ self

G and the dropout threshold θd

G . We can also easily

consider a risk-averse (or risk loving) decision maker: in the case of an exponential utility function,

this will lead to an additive bias fG proportional to the variance σ̃ 2

G , i.e., W̃i ∼ N(mGi + fGi , σ̃
2

Gi
).
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A MISSING PROOFS
A.1 Properties of the best response
Recall that the payoff function of an individual with effortm and given the selection threshold θ is

u(m;θ ) = S · Φ

(
m − θ

σ̃

)
−

1

2

Cm2,

where Φ is the CDF of the standard normal distribution.

Denoting ϕ the PDF of the standard normal distribution, the first two derivatives of u with

respect tom are:

∂u

∂m
(m;θ ) =

S

σ̃
ϕ

(
θ −m

σ̃

)
−Cm,

∂2u

(∂m)2
(m;θ ) =

S

σ̃
ϕ

(
θ −m

σ̃

)
θ −m

σ̃ 2
−C .

The payoff function u is defined on [0,∞), and it is continuous and continuously differentiable.

Moreover,
∂u
∂m (m = 0) > 0 and u(m;θ )

m→∞
−−−−−→ −∞. Hence, all local maxima of u must satisfy the

first-order condition (FOC)
∂u
∂m (m;θ ) = 0 and the second-order condition (SOC)

∂2u
∂m2

≤ 0. The

maximum of the payoff function is attained in one of the local maxima.

We start by a first lemma.

Lemma 3 (Maxima of u). Fix S , C and σ̃ .

(i) If S < Cσ̃ 2/ϕ(1), then there is a unique global maximum of u(m;θ ) for all θ .
(ii) If S ≥ Cσ̃ 2/ϕ(1), then there exists a unique θd(S) such that for θ = θd(S) there are two global

maxima of u(m;θ ), and for θ , θd, there is a unique global maximum of u(m;θ ).

http://arxiv.org/abs/cs.IR/2201.12662
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Proof. Let us denote by z = (m −θ )/σ̃ and let v(z) = S
σ̃ ϕ(z) −Cσ̃z andw(z) := − S

σ̃ zϕ(z) −Cσ̃ =
dv(z)/dz. The first and second derivatives of u can be expressed as a function of v andw :

∂u

∂m
(m;θ ) = v(z) −Cθ ,

∂2u

(∂m)2
(m;θ ) =

1

σ̃
w(z).

The function z · ϕ(z) has the global maximum at z = 1 which is equal to ϕ(1), and the global

minimum at z = −1 which is equal to −ϕ(1). Hence, two cases are possible:

(i) If ϕ(1) < Cσ̃ 2/S , thenw(z) < 0 for all z , 1. Hence, v is a strictly decreasing function (since

w < 0 in this case), so the FOC gives a unique solutionm which is a global maximum of u.
(ii) If ϕ(1) ≥ Cσ̃ 2/S , then the equationw(z) = 0 has two real solutions, denoted by z1 ≤ z2. They

can be found explicitly, i.e., z1,2 = −

√
−W1,2

(
− 2πC2σ̃ 4

S2

)
whereW is the Lambert function

defined as the inverse to the function f (y) = yey . Note also that z1

S→∞
−−−−→ −∞ and z2

S→∞
−−−−→ 0.

We consider the latter case (ii) in details. We can

verify, that the functionv is a decreasing function

for z ∈ (−∞, z1) ∪ (z2,∞), and it is an increasing

function for z ∈ (z1, z2). This shows that the func-

tion v(z) has the same shape as the curve on the

right. As a result, the FOC conditionv(z)−Cθ = 0

can have at most three solutions depending on

the value of θ . z1 z2

C 1

C 2

v

Indeed, let θ1 = v(z1)/C and θ2 = v(z2)/C .

• For all θ < (θ1,θ2), the FOC gives a unique solution which is a global maximum of u(m;θ ).
• For all θ ∈ (θ1,θ2), we have thatv(z1) ≤ Cθ andv(z2) ≥ Cθ which guarantees three solutions

to FOC which we denote bym1 ≤ m2 ≤ m3.

• For θ = θ1 ,we have u(m1(θ );θ ) = u(m2(θ );θ ), and for θ = θ2 we have that u(m2(θ );θ ) =
u(m3(θ );θ ). For all θ ∈ (θ1,θ2), them2 is a local minimum,m1 andm3 are local maxima.

Consider the two continuous, differentiable and non-negative functions ∆12(θ ) = u(m1(θ );θ ) −
u(m2(θ );θ ) and ∆32(θ ) = u(m3(θ );θ ) − u(m2(θ );θ ). We can see that ∆12(θ1) = 0 and ∆32(θ2) = 0.

We can also verify that
∂u(m(θ ),θ )

∂θ = Cm
(
∂m
∂θ − 1

)
− Cm ∂m

∂θ = −Cm(θ ) < 0. Therefore, the

function ∆12 is increasing , since
d∆12

dθ = C(m2(θ ) − m1(θ )) > 0, whereas the function ∆32 is

decreasing since
d∆32

dθ = C(m2(θ ) −m3(θ )) < 0. Hence, there is a unique θd ∈ (θ1,θ2), such that

∆12(θ
d) = ∆23(θ

d) which is equivalent to u(m1(θ
d),θd) = u(m3(θ

d),θd).

□

A.2 Proof of Lemma 1
We start with the proof of the case (i). According to Lemma 3, there are two pure best response

values, bmax
and bmin

, that correspond to the dropout threshold θd
. Following the definition of

the expected payoff u(m;θ ), we can show the following upper bound on the values of pure best

responses b(θd) ∈ {bmax(θd),bmin(θd)}:

0 < u(b(θd);θd) = S · x(b(θd);θd) −
Cb2(θd)

2

≤ S −
Cb2(θd)

2

.



This implies that b(θd) ≤
√

2S/C .

Second, we show that |θd − b(θd)| is not bounded as S → ∞. By assuming that |θd − b(θd)| < ε
for all S , we end up with the following contradictory inequality that must hold for any value of S :

ϕ
( ε
σ̃

)
< ϕ

(
θd − b(θd)

σ̃

)
=
Cσ̃

S
· b(θd) ≤ σ̃

√
2C/S

S→∞
−−−−→ 0,

where ϕ is the PDF of the standard normal distribution N(0, 1).
Since the value of |θd − b(θd)| is not bounded, by studying the first and the second derivatives of

the payoff function (as in Lemma 3), we can show that (bmax(θd) − θd)
S→∞
−−−−→ +∞ and (bmin(θd) −

θd)
S→∞
−−−−→ −∞. Hence, the selection rates, corresponding to the bmax

and bmin
converge to:

lim

S→∞
x(bmax(θd);θd) = lim

S→∞
Φ

(
bmax(θd) − θd

σ̃

)
= 1,

lim

S→∞
x(bmin(θd);θd) = lim

S→∞
Φ

(
bmin(θd) − θd

σ̃

)
= 0,

where Φ is the CDF of the standard normal distribution N(0, 1).
Asymptotic behavior of bmin and bmax. Using the definition of the dropout threshold θd

and

the definition for bmin
, bmax

, we can write:

0 < u(bmax(θd);θd) = u(bmin(θd);θd) ⇐⇒

0 < x(bmax(θd);θd) −
C(bmax(θd))2

2S
= x(bmin(θd);θd) −

C(bmin(θd))2

2S
< x(bmin(θd);θd).

As limS→∞ x(bmin(θd);θd) = 0 and limS→∞ x(bmax(θd);θd) = 1, it implies that

lim

S→∞

C(bmax(θd))2

2S
= 1 and lim

S→∞

C(bmin(θd))2

2S
= 0.

Hence, we show the asymptotic behavior of the pure strategy best response at θd
for S → ∞:

bmax(θd(S)) =
√

2S/C(1 + o(1)) and bmin(θd(S)) = o(
√

2S/C).

Asymptotic behavior of θd. Finally, we consider the asymptotic behavior of the dropout thresh-

old θd
. The dropout threshold θd(S) is unbounded: if we assume the opposite, then bmax

would be

o(1), S → ∞ since bmax
must satisfy the FOC:

bmax(θd) =
S

Cσ̃
ϕ

(
θd − bmax(θd)

σ̃

)
.

Hence, consider the following limit which we find using l’Hôpital rule and the properties of bmin

and bmax
proven above:

lim

S→∞

θd(S)√
2S/C

= lim

S→∞

bmax(θ d(S ))+bmin(θ d(S ))
2S

1

2
S−1/2

√
2/C

= lim

S→∞

bmax(θd(S)) + bmin(θd(S))√
2S/C

= 1.

Refined asymptotic behavior of bmin. Since bmin(θd(S)) = o(
√

2S/C) and θd(S) =
√

2S/C(1 +
o(1)) as S → ∞, then, using the first-order condition, we show

bmin(θd(S)) =
S

Cσ̃
ϕ

(
θd(S) − bmin(θd(S))

σ̃

)
=

S

Cσ̃
ϕ

(√
2S/C(1 + o(1))

σ̃

)
S→∞
−−−−→ 0.



Now, we are ready to proof the case (ii). According to Lemma 3, the pure best response is unique.

Consider two cases:

• If θ (S) = γθd(S), then limS→∞

(
b(γθd

G (S)) − γθd

G (S)
)
= +∞. Consider the following limit that

we calculate using l’Hôpital rule:

lim

S→∞

b(γθd(S))

γθd(S)
= lim

S→∞

db/dθ · dθ/dS

dθ/dS
= lim

S→∞

db

dθ
= lim

S→∞

b(b − θ )

b(b − θ ) + σ̃ 2
= 1.

• If θ (S) = θd(S)/γ , then limS→∞

(
b(θd(S)/γ ) − θd(S)/γ

)
= −∞. Since the payoff function u is

non-negative, we have:

u ≥ 0 ⇐⇒ Cb(θd(S)/γ )2/(2S) ≤ Φ

(
b(θd(S)/γ ) − θd(S)/γ

σ̃

)
S→∞
−−−−→ 0.

Hence, b(θd(S)/γ ) = o(
√

2S/C). Given that the best response must satisfy the FOC:

b(θd(S)/γ ) =
S

Cσ̃
ϕ

(
θd(S)/γ − b(θd(S)/γ )

σ̃

)
=

S

Cσ̃
ϕ

©«
√

2S/C 1

γ (1 + o(1))

σ̃

ª®¬ = o(1).
A.3 Proof of Lemma 2
Case (i). The asymptotic behavior of the dropout threshold is given in Appendix A.2. We recall the

proof here. Consider the following limit which we find using l’Hôpital rule and the properties of

bmin
and bmax

proven in Lemma 1:

lim

S→∞

θd(S)√
2S/C

= lim

S→∞

bmax(θ d(S ))+bmin(θ d(S ))
2S

1

2
S−1/2

√
2/C

= lim

S→∞

bmax(θd(S)) + bmin(θd(S))√
2S/C

= 1.

Case (ii). To prove that the dropout threshold θd(S ; σ̃ ) is decreasing with σ̃ , we differentiate with
respect to σ̃ the condition on the equal payoffs for bmin

and bmax
strategies, and we obtain:

∂θd

∂σ̃
= −

bmax(θd(S)) + bmin(θd(S)) − θd(S)

σ̃
< 0 for large enough S .

A.4 Proof of Theorem 1
Let us denote by T the set-valued function

T (θ ) = {F−1

µ (1 − α) : µG ∈ βG (θ )},

where µ = (µH , µL) and Fµ is the CDF of W̃ induced by µ: Fµ = pH FµH + pLFµL .

Lemma 4. There is a one-to-one correspondence between the fixed points ofT and the equilibria µun

of the game Gun.

Proof. If µun
is an equilibrium of the game Gun

, then there is a unique θun
such that F−1

µun (1−α) =

θun
since Fµun (θ ) is a monotone function. This θun

is a fixed point of T since µun

G ∈ βG (θ
un) by

definition of µun
.

On the other hand, if θun
is a fixed point of T , then there is a unique µun = (µun

H , µ
un

L ) such that

µun

G ∈ βG (θ
un):

(1) If θ , θd

G for allG ∈ {H ,L}, then the pure best responses bH and bL are unique (see Lemma 3

in Appendix A.1), so µun
is unique.



(2) If, without loss of generality, θ = θd

H , then there is a unique pure best response bL , and two

pure response values bmax

H , bmin

H (see Lemma 3 in Appendix A.1). The function F (τ ) = Fµ(θ )

is monotone in τ ∈ [0, 1] which is a probability for µH = τδ (m − bmax

H ) + (1 − τ )δ (m − bmin

H ).

It is also an equilibrium of Gun
as θ = F−1

µ (1 − α) by definition of θ . Hence, µun = (µH , µL) is
an equilibrium of the game Gun

and it is unique.

□

By showing a one-to-one correspondence between equilibria of Gun
and the fixed points of T , it

is left us to prove that the functionT (θ ) has a unique fixed point θun
, i.e., a solution toT (θun) = θun

is unique. This will imply that the equilibrium of the game Gun
is unique. We use the following

lemmas.

Lemma 5. Assume thatm(θ ) satisfies FOC and SOC defined in Section A.1.

(i) Ifm > θ , then 0 < dm
dθ < 1.

(ii) Ifm ≤ θ , then dm
dθ ≤ 0.

Proof. First, we derive the expression for the first derivative. We differentiate the both sides of

FOC defined in Appendix A.1:

dm

dθ
=

S

Cσ̃

(
m − θ

σ̃

)
ϕ

(
θ −m

σ̃

) (
1 − dm

dθ

σ̃

)
=
m − θ

σ̃ 2
m

(
1 −

dm

dθ

)
=⇒

dm

dθ
=

m(m − θ )

m(m − θ ) + σ̃ 2
.

Second, from the SOC defined in Appendix A.1, we find thatm (m − θ ) + σ̃ 2 > 0. Hence, the sign

of the derivative dm/dθ is determined only be the sign of its numeratorm(m − θ ). Note that the
value ofm is strictly positive as it satisfies the FOC, so dm/dθ > 0 if and only ifm > θ . □

Lemma 6. For all S and θ , θd

G (S), the total derivative dT /dθ can be expressed as:

dT

dθ
=

∑
G pG

1

σ̃G
ϕ

(
T−bG
σ̃G

)
·

bG (bG−θ )
bG (bG−θ )+σ̃ 2

G∑
G pG

1

σ̃G
ϕ

(
T−bG
σ̃G

) < 1.

Proof. Since T is an implicit function of θ , we use the chain rule to find the total derivative:

dT

dθ
=

∑
G

∂T

∂bG

dbG
dθ
.

By differentiating both sides of the budget constraint, we can find the partial derivative ∂T /∂mG :

∂

∂bG

(∑
G

pGxG (bG ;T )

)
= 0 ⇐⇒

∂T

∂bG
=

pG
1

σ̃G
ϕ

(
T−bG
σ̃G

)
∑
G pG

1

σ̃G
ϕ

(
T−bG
σ̃G

) .
Finally, using the fact that ∂T /∂bG > 0, where

∑
G ∂T /∂bG = 1 and Lemma 5, we show that

dT /dθ < 1.

□

Existence. First, let us show that there is an interval [θ0,θ1], such that for all θ ∈ R, we have that
θ0 ≤ T (θ ) ≤ θ1:

• Since the best response bG (θ ) ≥ 0 for all G ∈ {H ,L}, then for any fixed α , let θ0 be the

solution to the equation

∑
G pGΦ

c
(
θ0−0

σ̃G

)
= α . Hence, T (θ ) ≥ θ0 for all θ ∈ R.



• Since the best response bG (θ ) ≤
√

2S/CG for all G ∈ {H ,L}, then for any fixed α , let θ1 be

the solution to the equation

∑
G pGΦ

c
(
θ1−

√
2S/CG
σ̃G

)
= α . Hence, T (θ ) ≤ θ1 for all θ ∈ R.

Therefore, we can consider the functionT on the interval [θ0,θ1] which is compact and convex. The

graph of the function T is closed and for all θ ∈ [θ0,θ1], we have that T (θ ) is convex (for θ , θd

G ,

the value of T (θ ) is unique, and for θ = θd

G , the value of T (θ ) is an interval). Hence, using Kakutani

fixed point theorem, we show that the fixed point exists.

Uniqueness. We show that there exists a fixed point of the function T . For all θ , θd

G , we have

that dT /dθ < 1 (Lemma 6), and we have that limθ→θ d

G+
T (θ ) ≤ limθ→θ d

G−T (θ ) for all G ∈ {H ,L}.

Hence, there is a unique solution to the fixed-point problem T (θ ) = θ , and, as a result, a unique
equilibrium of the game Gun

due to Lemma 4.

A.5 Proof of Theorem 2
Case (i). We prove that the dropout threshold θd

1
(S) is the fixed point of T , i.e., it corresponds

to the equilibrium of the game Gun
. As we show in the proof of Lemma 1, as S → ∞, we have

xmax

G := x(bmax(θd

G );θ
d

G )
S→∞
−−−−→ 1 and xmin

G := x(bmin(θd

G );θ
d

G )
S→∞
−−−−→ 0.

If α ≤ p1, and given that the selection rate for the G2-candidates at θ
d

1
tends to zero with S ,

assume that G1-candidates randomize their strategy by playing bmax

1
with the probability τ1 and

bmin

1
with the probability 1 − τ1. The G2-candidates play b2(θ

d

1
)

S→∞
−−−−→ 0. The probability τ1 can be

found from the budget constraint: α = p1(τ1x
max

1
+ (1 − τ1)x

min

1
) + p1x2(θ

d

1
,b2(θ

d

1
))

S→∞
−−−−→ p1τ1, so

τ1

S→∞
−−−−→ α/p1. This strategy satisfies the budget constraint, so θd

1
is the fixed point of T .

Case (ii). We now prove that the dropout threshold θd

2
is fixed point of T . If α > p1, then selecting

all candidates fromG1 group would not be enough, and some G2-candidates are needed to satisfy

the selection rate α .

Given θd

2
, the fraction of selected G1-candidates would be equal to x1(θ

d

2
,b1(θ

d

2
))

S→∞
−−−−→ 1. We

claim the G2-candidates will play b
max

2
with probability τ2, and b

min

2
with probability 1 − τ2. The

probability τ2 can be found from the budget constraint:

α = p1x1(θ
d

2
,b1(θ

d

2
)) + p2(x

max

2
τ2 + x

min

2
(1 − τ2))

S→∞
−−−−→ p1 + p2τ2.

Hence, for τ2

S→∞
−−−−→

α−p1

p2

, the dropout threshold, θd

2
is the fixed point of T .

A.6 Proof of Corollary 2
We use the expressions for equilibrium strategies from Theorem 2 and Theorem 4.

(i) If CH = CL = C and σ̂ 2

H > σ̂ 2

L :

lim

S→∞

µ̄un

H

µ̄
dp

H

= lim

S→∞


α/pH

√
2S/C(1+o(1))

α
√

2S/C(1+o(1))
if α ≤ pH

√
2S/C(1+o(1))

α
√

2S/C(1+o(1))
if α > pH

=

{
1/pH if α ≤ pH ,

1/α if α > pH ,

lim

S→∞

µ̄un

L

µ̄
dp

L

= lim

S→∞


o(1)

α
√

2S/C(1+o(1))
if α ≤ pH

α−pH
pL

√
2S/C(1+o(1))

α
√

2S/C(1+o(1))
if α > pH

=

{
0 if α ≤ pH ,
α−pH
α−αpH

if α > pH .



(ii) If CH > CL :

lim

S→∞

µ̄un

H

µ̄
dp

H

= lim

S→∞


o(1)

α
√

2S/CH (1+o(1))
if α ≤ pL

(α−pL )/pH
√

2S/CH (1+o(1))

α
√

2S/CH (1+o(1))
if α > pL

=

{
0 if α ≤ pL,
α−pL
α−αpL

if α > pL,

lim

S→∞

µ̄un

L

µ̄
dp

L

= lim

S→∞


α/pL

√
2S/CL (1+o(1))

α
√

2S/CL (1+o(1))
if α ≤ pL

√
2S/CH (1+o(1))

α
√

2S/CL (1+o(1))
if α > pL

=

{
1/pL if α ≤ pL,√

CL
CH

1

α if α > pL .

A.7 Proof of Theorem 5
First, using the formula for the expected value of the truncated normal distribution, we find:

Qun(mG ;θ ) =
∑
G

pG E(WG · [W̃G > θG ]) =
∑
G

pG E(WG |W̃G > θG ) P(W̃G ≥ θG )

=
∑
G

pG

[
mGΦ

(
θG −mG

σ̃G

)
+ σ̃Gϕ

(
θG −mG

σ̃G

)]
.

Second, using Lemma 1, we can show that for all γ ∈ (0, 1) and θG = γ · θd

G , we have:

bG (θG ) · Φ

(
θG − bG (θG )

σ̃G

)
+ σ̃Gϕ

(
θG − bG (θG )

σ̃G

)
= θG (1 + o(1))(1 + o(1)) + σ̃G · o(1) = θG (1 + o(1))

and, for θG = θ
d

G/γ , we have:

bG (θG ) · Φ

(
θG − bG (θG )

σ̃G

)
+ σ̃Gϕ

(
θG − bG (θG )

σ̃G

)
S→∞
−−−−→ 0.

For θG = θ
d

G , we have:

bmax

G (θG ) · Φ

(
θG − bmax

G (θG )

σ̃G

)
+ σ̃Gϕ

(
θG − bmax

G (θG )

σ̃G

)
= θG (1 + o(1)),

bmin

G (θG ) · Φ

(
θG − bmin

G (θG )

σ̃G

)
+ σ̃Gϕ

(
θG − bmin

G (θG )

σ̃G

)
S→∞
−−−−→ 0.

For the game Gdp
, we use the equilibrium strategy from Theorem 4, and can write that:

Qdp = pH (α + o(1)) · θ
d

H (S)(1 + o(1)) + pL · (α + o(1))θ
d

L(S)(1 + o(1))

= αpH · θd

H (S)(1 + o(1)) + αpL · θ
d

L(S)(1 + o(1)), S → ∞.

For the game Gun
, we use the equilibrium strategy from Theorem 2. We consider separately the

case of group-independent and the case of group-dependent costs.

Group-independent cost.

If α ≤ pH , then

Qun = pH (α/pH + o(1)) · θ
d

H (1 + o(1)) + pL · o(1) = α ·
√

2S/C(1 + o(1)), S → ∞.

If α > pH , then

Qun = pH (1 + o(1)) · θ
d

L(1 + o(1)) + pL ·

(
α − pH
pL

+ o(1)

)
θd

L(1 + o(1)) = α
√

2S/C(1 + o(1)), S → ∞,



where we use the assumption on equal costsCH = CL and the result of Lemma 2 on the asymptotic

behavior of the dropout threshold. Hence, we can calculate the limit:

lim

S→∞
Qdp/Qun = 1.

Group-dependent cost.

If α ≤ pL , then

Qun = pL(α/pL + o(1)) · θ
d

L · (1 + o(1)) + pH · o(1) = α ·
√

2S/CL · (1 + o(1)).

If α > pL , then

Qun = pL(1 + o(1)) · θ
d

H · (1 + o(1)) + pH ·

(
α − pL
pH

+ o(1)

)
θd

H (1 + o(1))

= pL(1 + o(1))θ
d

H · (1 + o(1)) + (α − pL)θ
d

H (1 + o(1)).

Hence, for c :=
√
CL/CH , we can write that:

lim

S→∞
Qun/Qdp =


limS→∞

αθ d

L (1+o(1))
αpH θ d

H (1+o(1))+αpLθ d

L (1+o(1))
= 1

cpH+pL
if α ≤ pL,

limS→∞
pLθ d

H (1+o(1))+(α−pL )θ d

H (1+o(1))
αpH θ d

H (1+o(1))+αpLθ d

L (1+o(1))
= c

cpH+pL
if α > pL,

where
c

cpH+pL
< c

cpH+cpL
= 1.

A.8 Proof of Theorem 6
Equilibrium efforts. Let us first find for which α ∈ (0, 1) we have the equality of effort at

equilibrium, i.e.,mun

H = mun

L . Since the equilibrium values are the best responses to θun
, and the

pure best response is unique (see Lemma 3), we can write:

mun

H =m
un

L ⇐⇒
S

CH σ̃H
ϕ

(
θun −mun

H

σ̃H

)
=

S

CLσ̃ L
ϕ

(
θun −mun

L

σ̃ L

)
⇐⇒ θun −mun

H = ±

√
−2

log(CH σ̃H ) − log(CLσ̃ L)

1/σ̃ 2

H − 1/σ̃ 2

L
.

For CH σ̃H > CLσ̃ L , there exist no real solution to the above equation. In this case, we can

show that mun

H < mun

L for all α ∈ (0, 1). Assume the opposite, i.e., mun

H > mun

L for all θ , then
ϕ((θ−mun

H )/σ̃H ) < ϕ((θ−mun

L )/σ̃ L) and alsoCH σ̃H > CLσ̃ L which contradicts the initial assumption.

For CH σ̃H ≤ CLσ̃ L , there are two values of αmun

H =m
un

L
which correspond to equal equilibrium

effortsmun

H =m
un

L :

α (1,2)
mun

H =m
un

L
=

∑
G

pGΦ
c
©«
±

√
−2

log(CH σ̃H )−log(CL σ̃ L )

1/σ̃ 2

H−1/σ̃ 2

L

σ̃G

ª®®®®¬
.

We can verify that dbH /dα > dbL/dα for α (1)

mun

H =m
un

L
and dbH /dα < dbL/dα for α (2)

mun

H =m
un

L
which

concludes the proof.



Equilibrium selection rates. Let us find such αxH=xL for which both groups are selected at

equal rates, i.e., xun

H = xun

L . This is equivalent to:

Φc
(
θun −mun

H

σ̃H

)
= Φc

(
θun −mun

L

σ̃ L

)
= αxH=xL ⇐⇒ θun =mun

G + σ̃GΦ
−1(1 − αxH=xL ), ∀G ∈ {H ,L}.

By definition of the best response, we can also write that:

mun

G =
S

CG σ̃G
ϕ

(
θun −mun

G

σ̃G

)
=

S

CG σ̃G
ϕ

(
Φ−1(1 − αxH=xL )

)
,

θun =
S

CG σ̃G
ϕ

(
Φ−1(1 − αxH=xL )

)
+ σ̃GΦ

−1(1 − αxH=xL ).

The equality for θun
is possible only for such α , when

S

CH σ̃H
ϕ

(
Φ−1(1 − αxH=xL )

)
+ σ̃HΦ

−1(1 − αxH=xL ) =
S

CLσ̃ L
ϕ

(
Φ−1(1 − αxH=xL )

)
+ σ̃ LΦ

−1(1 − αxH=xL ),

which is if and only if

S

(
1

CH σ̃H
−

1

CLσ̃ L

)
ϕ

(
Φ−1(1 − αxH=xL )

)
= Φ−1(1 − αxH=xL )(σ̃ L − σ̃H ).

We solve the corresponding equation by letting z B Φ−1(1 − αxH=xL ) and solving with respect to z.
After, αxH=xL = 1 − Φ(z).

Let ξ = S
(

1

CH σ̃H
− 1

CL σ̃ L

)
/(σ̃ L − σ̃H ). Then by definition of ϕ:

ξ
1

√
2π

e−
z2

2 = z ⇐⇒ z · e
z2

2 = ξ
1

√
2π
.

By squaring both sides of the above equation, we end up with the equation of type y · ey = const
which can be solved using the Lambert W function defined as the inverse to f (y) = y · ey . As a
result, by solving for z2

and taking the square root with the sign equal to the sign of ξ , we show:

αxH=xL = 1 − Φ
©«sgn(ξ )

√
W

(
ξ 2

2π

)ª®¬ .
We can verify that thedxH /dα > dxL/dα atαxH=xL , so for allα < αxH=xL = 1−Φ

(
sgn(ξ )

√
W

(
ξ 2

2π

))
,

we have that xun

H < xun

L .
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