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Abstract
The Colonel Blotto game is a famous game com-
monly used to model resource allocation prob-
lems in many domains ranging from security to
advertising. Two players distribute a fixed bud-
get of resources on multiple battlefields to maxi-
mize the aggregate value of battlefields they win,
each battlefield being won by the player who al-
locates more resources to it. The continuous ver-
sion of the game—where players can choose any
fractional allocation—has been extensively stud-
ied, albeit only with partial results to date. Re-
cently, the discrete version—where allocations can
only be integers—started to gain traction and algo-
rithms were proposed to compute the equilibrium in
polynomial time; but these remain computationally
impractical for large (or even moderate) numbers
of battlefields. In this paper, we propose an algo-
rithm to compute very efficiently an approximate
equilibrium for the discrete Colonel Blotto game
with many battlefields. We provide a theoretical
bound on the approximation error as a function of
the game’s parameters, in particular number of bat-
tlefields and resource budgets. We also propose an
efficient dynamic programming algorithm to com-
pute the best-response to any strategy that allows
computing for each game instance the actual value
of the error. We perform numerical experiments
that show that the proposed strategy provides a fast
and good approximation to the equilibrium even for
moderate numbers of battlefields.

1 Introduction
The past decade has seen a rising interest in using game-

theoretic models for security problems, see e.g., [Tambe,
2011]. As the modern world is facing increasingly important
security threats, such models are interesting because they al-
low deriving defenses that are optimized against adaptive ad-
versaries for different specific applications such as patrolling
or screening problems, see e.g., [Conitzer and Sandholm,
2006; Bošanský et al., 2011; Yang et al., 2013; Letchford

and Conitzer, 2013; Fang et al., 2015; Gan et al., 2015;
Brown et al., 2016] amongst others. Several solutions of
game-theoretic models have been implemented in real-world
defense applications with positive results, validating the im-
portance and relevance of game theory for security problems
[Pita et al., 2011; Yin et al., 2012].

Recently, the community started to gain interest in the cel-
ebrated Colonel Blotto game. In the Colonel Blotto game,
two players (often referred to as colonels) choose how to dis-
tribute a fixed budget of resources (often called troops or sol-
diers) on a number of battlefields. Each battlefield has a given
value and is won by the player who allocates more resources
to it; each player maximizes the sum of values of battlefields
he wins. As a simple and elegant model for strategic resource
allocation problems, the Colonel Blotto game (and in par-
ticular the characterization of its equilibrium) has important
applications in many domains including security (allocation
of defense/attacks resources), but also politics (allocation of
campaign resources or lobbying resources), industrial oper-
ations (allocation of R&D resources) or advertisement (allo-
cation of ad budgets). Its continuous version, where players
can choose any fractional allocation, has received high atten-
tion from the economics community since its first introduc-
tion in 1921. However, only partial results are known to date;
in particular, the equilibrium characterization in the general
case of parameters configuration still remains as a challeng-
ing open question (see related works below).

The discrete version of the Colonel Blotto game (where al-
locations can only be integers), which is meaningful in appli-
cations where individual troops cannot be divided, started to
gain traction much more recently in the algorithmic game the-
ory community. Since it is a finite constant-sum game, it can
in principle be solved numerically in general cases through
linear programming. However, standard solutions to compute
the Nash equilibria face the issue that the strategy space of the
players grows exponentially with the number of battlefields
and the number of troops. To tackle this problem, two algo-
rithms were proposed in the last two years in [Ahmadinejad
et al., 2016] and [Behnezhad et al., 2017]. Both algorithms
rely on transforming the linear program formulation which
significantly improves the complexity. Yet, these algorithms
still become computationally impractical when the number
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of battlefields and/or the number of troops is large (e.g., it
takes over 1 day to solve instances with 45 battlefields and 75
troops in our simulations). In applications such as security or
politics, it is frequent that these parameters are large. In that
case, the question remains open: how to efficiently compute
an equilibrium strategy?

In this work, we take a different approach that relaxes the
equilibrium notion considered to gain dramatically in com-
putational efficiency: we propose and analyze an algorithm
to compute very efficiently an approximate Nash equilibrium
for the discrete Colonel Blotto game with many battlefields
and troops. Specifically, denoting by n the number of battle-
fields and by p the number of troops of the stronger player,
we make the following contributions:

1. We propose a mixed strategy, which we term discrete in-
dependently uniform strategy (hereinafter DIU strategy). In-
spired by partial results on the equilibrium marginals in the
continuous version of the game, our strategy first generates
allocations independently on each battlefield with appropri-
ately defined distributions, then rescales them and performs a
rounding process that guarantees the integer constraint while
maintaining the budget constraint. This has complexityO(n).

2. Denoting Vn the total payoff of the game, we prove that the
DIU strategy is an ε̄Vn-equilibrium. We give a theoretical
bound on ε̄ that shows how good of an approximation to the
Nash equilibrium the DIU strategy is, depending on n and p.

3. We propose a dynamic programing algorithm to compute a
best-response of a player to a given set of marginals (on each
battlefield) of the adversary. Our algorithm has complexity
O(p2 · n). It allows us to efficiently compute the actual value
of ε̄ for any given set of parameters of the game.

4. We perform numerical experiments that illustrate that the
proposed DIU strategy provides a good approximation to the
equilibrium even for a relatively moderate number of battle-
fields. We also compare our solution to the exact equilibrium
found by the algorithm of [Behnezhad et al., 2017] both in
terms of the payoff obtained and the computation time.

Our proposed algorithm computes directly a realization of
the strategy, rather than computing the mixed strategy of the
players (i.e., the equilibrium distribution) as in [Ahmadine-
jad et al., 2016; Behnezhad et al., 2017]. In practice, this is
what a player would need to generate his allocation. Yet, even
though the distribution from which our strategy is drawn is
only implicitly defined, we prove that it provides an approxi-
mate equilibrium. Besides, it is possible to generate this dis-
tribution with arbitrary precision simply by generating many
realizations independently using our proposed algorithm.

Note finally that our approximate equilibrium is not “uni-
versal” in the sense that it does not provide a good approxima-
tion for any set of parameters. Roughly, the approximation is
good if the numbers of battlefields and troops are large. Yet,
our proposed approximate equilibrium provides an important
contribution because (i) it is a realistic case in several applica-
tions and (ii) it is precisely the case where exact equilibrium
computation algorithms are computationally infeasible.

Related works The Colonel Blotto game was first intro-
duced in 1921 in its continuous version [Borel, 1921]. Since

then, a number of partial solutions have been proposed. The
case of symmetric players (with identical budgets) with an ar-
bitrary number of battlefields was solved by [Borel and Ville,
1938; Gross and Wagner, 1950; Gross, 1950], who also pro-
vided a solution for the asymmetric case with two battlefields
(see also [Laslier, 2002]). In 2006, a solution was found
for the case of asymmetric players with an arbitrary num-
ber of battlefields but only for homogeneous battlefields (all
with identical value) [Roberson, 2006]. This solution was ex-
tended in [Schwartz et al., 2014] to heterogeneous battlefields
but only under some restrictions. Today, the general case of
asymmetric players with heterogeneous battlefields remains
unsolved for the continuous Blotto game.

Many extensions and variants of the continuous Colonel
Blotto game have been studied: relaxing the budget constraint
[Myerson, 1993; Kovenock and Roberson, 2015], consider-
ing other objectives [Laslier, 2005] or analyzing sequential
moves [Powell, 2009; Rinott et al., 2012]. Many applications
have also been considered, e.g., to politics [Laslier, 2002],
economics [Kovenock and Roberson, 2012], security [Pow-
ell, 2009], and social networks [Masucci and Silva, 2014].

The discrete version of the Colonel Blotto game has re-
ceived far less attention. Partial results for special cases are
proven in [Hart, 2008; Hortala-Vallve and Llorente-Saguer,
2012]. In the last two years, the discrete Colonel Blotto game
attracted interest from the algorithmic game theory commu-
nity. Two algorithms were proposed to compute the Nash
equilibrium for the general asymmetric and heterogeneous
case. A first algorithm was proposed in [Ahmadinejad et
al., 2016], based on a reduction to an exponential-size lin-
ear program and a clever use of the Ellipsoid method to solve
it in polynomial time. In [Behnezhad et al., 2017], another
algorithm was proposed that obtains a polynomial-size lin-
ear program and solves it using the Simplex method. Al-
though both algorithms are providing polynomial-time/size
solutions to find the Nash equilibrium of the discrete Colonel
Blotto game, they remain computationally intractable in prac-
tice with large numbers of troops and/or battlefields.

2 Problem Formulation
Game model We consider a discrete Colonel Blotto game
between two players denoted A and B. Each player has a fixed
amount of troops (or budget), denoted m and p for A and B
respectively, where m, p ∈ N. Without loss of generality, we
assume that A is the weak player, i.e., m ≤ p. Throughout
the paper, we denote by λ := p

m the ratio of players budgets.
The game is a one-shot game where players simultane-

ously allocate their troops to n battlefields (n ≥ 3). A
pure strategy of player A is a vector x̂A ∈ Nn, with integer
elements x̂Ai ≥ 0 representing the allocation to battlefield i
(i = 1, 2 . . . , n) and satisfying the constraint

∑n
i=1 x̂

A
i ≤ m.

Similarly, a pure strategy of player B is a vector x̂B ∈ Nn
such that the constraint

∑n
i=1 x̂

B
i ≤ p holds.

Each battlefield i is commonly assessed by players with a
fixed value vi > 0. Values can be heterogeneous across bat-
tlefields, but we assume that each value belongs to a bounded
range: vi ∈ [vmin, vmax], with 0 < vmin ≤ vmax. We denote
by Vn =

∑n
i=1 vi the total value of all battlefields.
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Once players have allocated their troops, the player who
has the higher allocation to battlefield i wins that battlefield
and gains its whole value vi. In case of a tie, i.e., if xAi = xBi ,
player A gains αvi and player B gains (1− α) vi for some
constant α ∈ [0, 1] fixed. This is a very general tie-breaking
rule that includes all previously considered rules such as shar-
ing 50-50 (α = 0.5) or giving the battlefield to the stronger
player (α = 0). Each player chooses his strategy to maxi-
mize his own payoff equal to the sum of gains on each bat-
tlefield. Resources not allocated to any battlefield have no
outside value.

Additional notation For brevity, we denote by CBm,pn the
discrete Colonel Blotto game with n battlefields where player
A has m troops and player B has p troops. We denote by
ΠA (σ, γ) and ΠB (σ, γ) the expected payoffs of players A
and B when playing strategies σ and γ respectively. Through-
out the paper, we denote by FX the distribution function of a
random variable X . We use a hat (ẑ) to denote integers.

Approximate equilibrium We use the standard defini-
tion of an approximate equilibrium as follows: given
ε ≥ 0, a strategy profile (σ∗, γ∗) is an ε-equilibrium
of the game CBm,pn if ΠA(σ, γ∗) ≤ ΠA(σ∗, γ∗) + ε and
ΠB(σ∗, γ) ≤ ΠB(σ∗, γ∗) + ε for any strategy σ and γ of
players A and B. When it is unnecessary to emphasize the ap-
proximation error, we use the term approximate equilibrium.

3 Main Results
In this section, we give our proposed strategy and main the-

oretical results showing that it is an approximate equilibrium.

3.1 The DIU Strategy
Considering the game CBm,pn , we propose a mixed strategy

that we call Discrete Independently Uniform strategy (DIU
strategy), which will be proven to be an approximate equilib-
rium of the game. Intuitively, under the DIU strategy, players
first draw independently numbers from some particular uni-
form-type distributions; then they rescale these numbers to
guarantee the budget constraints; finally, they use a specific
rounding process to ensure the discrete requirements.

To formalize the DIU strategy definition, we introduce, for
any i ∈ {1, 2, . . . , n}, the uniform-type distributions:

FA∗
i

(x) :=

(
1− 1

λ

)
+

x

2 vi
Vn
λ

1

λ
, ∀x ∈

[
0, 2

vi
Vn
λ

]
, (3.1)

FB∗
i

(x) :=
x

2 vi
Vn
λ
, ∀x ∈

[
0, 2

vi
Vn
λ

]
. (3.2)

We observe that FB∗
i

is the (continuous) uniform distribu-
tion on [0, 2viλ/Vn] and FA∗

i
is the distribution where we

set a probability mass (1− 1/λ) at 0 and uniformly dis-
tribute the remaining mass on (0, 2viλ/Vn]. We define the
rounding function rm :

[
0, pm

]
→
{

0, 1
m ,

2
m , . . . ,

p
m

}
, such

that ∀x, rm(x) = x̂
m , where x̂ ∈ N is uniquely determined

and satisfies x̂
m −

1
2m ≤ x <

x̂
m + 1

2m .

Algorithm 1: DIU strategy generation algorithm.
Input: n,m, p ∈ N, and v ∈ [vmin, vmax]n

Output: x̂A, x̂B ∈ Nn
1 λ = p/m
2 for i = 1, 2, . . . , n do

3 ai =

{
0 with probability 1− 1

λ

∼ U
(

0, 2vi
Vn
λ
]

otherwise

4 if
∑n
j=1 aj = 0 then repeat line 2

5 for i = 1, 2, . . . , n do
6 bi =∼ U

[
0, 2vi

Vn
λ
]

7 sA0 = sB0 = 0
8 for i = 1, 2, . . . , n do
9 sAi =

∑i
k=1

ak∑n
j=1 aj

; sBi =
∑i
k=1

bk∑n
j=1 bj

p
m

10 x̂Ai := m
[
rm
(
sAi
)
− rm

(
sAi−1

)]
11 x̂Bi := m

[
rm
(
sBi
)
− rm

(
sBi−1

)]

We can now give the formal definition of the DIU strategy.1

Definition 3.1 (The DIU strategy). In the game CBm,pn ,
DIUA (respectively, DIUB) is the mixed strategy where
player A’s allocation x̂A (respectively, player B’s alloca-
tion x̂B) is randomly generated from Algorithm 1.

Remarks Algorithm 1 guarantees that the allocations are
integers and satisfy the budget constraints (with equality, i.e.,
without any unallocated resource). More importantly, the
DIUA (resp., DIUB) strategy is only implicitly defined via
Algorithm 1, that is to say it is the joint distribution of all
allocations {x̂Ai }i (resp., {x̂Bi }i). Each pure strategy output
from Algorithm 1 is only one realization of the DIU strategy.

Algorithm 1 is easy to implement and runs very fast in ex-
pected time O(n). Note that the for loop in lines 2-4 is not
guaranteed to end in finite time. However, the probability
that the loop runs over k times is (1− 1/λ)

kn and converges
to zero exponentially fast in k and n. To guarantee that the
algorithm ends in finite time, it is possible to put a stopping
criterion and assign an arbitrary allocation to player A if it is
reached. As this will happen with increasingly low probabil-
ity as n grows, it can be seen from the proof of Theorem 3.2
that the result will still hold. On the other hand, the summa-
tion

∑n
j=1 bj equals 0 only with probability zero, therefore

we do not need an additional condition for the for loop in
lines 5-6.

When applying the DIU strategy, player A’s allocation to
battlefield i = 1, 2, . . . , n follows the marginal distributions
FAD

i
while player B’s allocation follows FBD

i
whose corre-

sponding random variables are defined as:

ADi = m

[
rm
(∑i

k=1
Ank

)
− rm

(∑i−1

k=1
Ank

)]
, (3.3)

1We use the term DIU strategy to commonly address DIUA

and/or DIUB when unnecessary to emphasize a particular player.
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BDi = m

[
rm
(∑i

k=1
Bnk

)
− rm

(∑i−1

k=1
Bnk

)]
, (3.4)

where for any k = 1, 2, . . . , n,

Ank :=
A∗k∑n
j=1A

∗
j

and Bnk :=
B∗k∑n
j=1B

∗
j

p

m
, (3.5)

and random variables A∗k, B∗k have distributions (3.1)-(3.2).
We end this subsection by briefly describing the intuition

behind the construction of the DIU strategy in Definition 3.1.
First of all, from the equilibrium analysis done in [Roberson,
2006] and [Schwartz et al., 2014] for the continuous Colonel
Blotto game with n battlefields, where player A’s budget is 1
and player B’s budget is λ, the equilibrium marginal distri-
butions of players’ allocations to battlefield i follow distribu-
tions FA∗

i
and FB∗

i
. That is to say, a joint distribution (if it

exists) satisfying the constraint
∑n
i=1 x

A
i ≤ m and yielding

the marginal distributions
{
FA∗

i

}
i

will be a feasible strategy
of player A which constitutes an equilibrium of this continu-
ous game. However, the construction of such a strategy (and
even its existence) remains an open question.

On the other hand, by employing the DIU strategy in the
discrete Colonel Blotto game, players’ marginal allocations
at battlefield i follow the distributions FAD

i
and FBD

i
. These

distributions are rm-rounded from terms expressed by dis-
tributions FAn

i
and FBn

i
, which in turn, uniformly converge

towards FA∗
i

and FB∗
i

when n → ∞. The key idea is that,
the requirement to have discrete allocations in the discrete
game is less and less significant when the granularity of the
game increases (i.e. m

n ,
p
n → ∞), which makes it similar to

the continuous variant. Thus, based on the optimality in the
continuous variant of FA∗

i
against FB∗

i
(and vice versa), we

expect to have “near-optimality” in playing DIUA strategy
against DIUB strategy (and vice versa), with any arbitrary er-
ror ε̄Vn > 0, given large parameters n,m, p.

3.2 Approximate Equilibrium of The Discrete
Colonel Blotto Game

Theorem 3.2. The DIU strategy is an ε̄Vn-equilibrium
of the Colonel Blotto game CBm,pn (m ≤ p), where
ε̄ ≤ max{Õ(n−1/2),O(n/m)} and Vn is the total value
across all battlefields.2

The upper bound on ε̄ given by this theorem is important
because it allows us to evaluate the approximation error in
terms of the number of battlefields and amount of troops. In-
deed, we can look at Theorem 3.2 from a different perspective
and interpret it by an equivalent statement:

Restatement of Theorem 3.2. Fix λ ≥ 1 and ε̄ > 0; there
existsN∗ = O

(
ε̄−2 ln(ε̄−1)

)
such that for n ≥ N∗, there ex-

ists M∗ = O(n/ε̄) such that for m ≥M∗ and p = mλ ∈ N,
in the game CBm,pn , for any pure strategies x̂A and x̂B of
player A and B,

ΠA

(
x̂A,DIUB

)
≤ ΠA (DIUA,DIUB) + ε̄Vn, (3.6)

2The Õ notation is a variant of the big-O notation that “ignores”
logarithmic factors.

ΠB

(
DIUA, x̂

B
)
≤ ΠB (DIUA,DIUB) + ε̄Vn. (3.7)

At a high level, this confirms the intuition that if the num-
ber of battlefields and the budgets are large enough, then the
DIU strategy yields a near-optimal payoff against the oppo-
nent’s DIU strategy. The precise result shown in this theo-
rem, however, goes much beyond merely showing this con-
vergence and it is interesting and non-trivial in a number of
ways. First, Theorem 3.2 tells us exactly how the parameters
m and n should be to reach a given level of approximation.
We notice in particular that if the ratio m/n is small, then the
approximation may not be good, however large n gets.

Second, Theorem 3.2 involves a double limit, with two
growing parameters (n and m), and it identifies a precise
scaling regime (i.e., ratio between the two growing parame-
ters) under which the convergence holds. Here, Theorem 3.2
shows that the DIU strategy converges towards an equilibrium
as soon as m grows at least as fast as n3/2. This implies that,
if we first make m grow to infinity, and then make n grow to
infinity, the result will hold. However, the reverse is not true:
if n grows first or simply if m grows too slowly compared to
n, then the DIU does not converge towards an equilibrium.
Intuitively, if the number of troops is low compared to the
number of battlefields, then the average number of troops per
battlefield at equilibrium becomes low and the DIU strategy
based on a discretization of a uniform-type distribution is no
longer close to optimal.

Note that due to space constraints, we limited the state-
ment of our result to emphasize the dependence on n and m
but our proof also allows extracting the dependence of ε̄ on
vmin, vmax and λ. One then observes that the convergence is
slower if vmax/vmin is larger (i.e., the battlefields heterogene-
ity is higher) and if λ is larger (i.e., the players asymmetry is
higher). Note that we have written the above discussion with
m, but the exact same holds with p instead.

Finally, we remark that CBm,pn is a constant-sum game.
Therefore, by using inequalities (3.6) and (3.7), we can
straightforwardly prove that the DIU strategy is an approx-
imate max-min strategy of the game. This is presented as the
following corollary of Theorem 3.2.
Corollary 3.3. ∀λ ≥ 1, ∀ε̄ > 0, ∃N∗ = O(ε̄−2 ln(ε̄−1)) :
∀n ≥ N∗, ∃M∗ = O(n/ε̄) : ∀m ≥M∗, p = mλ ∈ N, in
the game CBm,pn , for any strategies σA and σB of players A
and B,

min
γ

ΠA(σA, γ) ≤ min
γ

ΠA(DIUA, γ) + ε̄Vn, (3.8)

min
σ

ΠB(σ, σB) ≤ min
σ

ΠB(σ,DIUB) + ε̄Vn. (3.9)

This corollary ensures that the DIU strategy gives the near-
optimal payoff to any player Q ∈ {A,B} even in the worst-
case (when the opponent −Q plays the strategy that mini-
mizes Q’s payoff). This emphasizes the fact that players can
“safely” use the DIU strategy in practice.

4 Numerical Evaluation
In this section, we turn to the numerical computation of

quantities related to the DIU strategy, in particular to evaluate
the quality of the approximation it gives depending on the
game’s parameters.
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4.1 A Dynamic-Programming Algorithm for the
Best Response

First, computing the value of ε̄ (or how close a given mixed
strategy of player A is to the equilibrium) requires finding
player B’s optimal allocation given that player A’s allocation
to battlefield i = 1, 2 . . . , n follows a given marginal dis-
tribution {Gi}i=1,2,...,n. This itself is a non-trivial problem
since there is in principle an exponential number of possi-
ble allocations to investigate. We propose an efficient algo-
rithm based on dynamic programming [Bertsekas, 2017] to
solve this problem. This is formally presented as the follow-
ing proposition.

Proposition 4.1. Algorithm 2 finds a best response strategy
of player B and his optimal payoff against any set of player
A’s marginals with complexity O

(
p2 · n

)
.

Note that, although our primary motivation is to compute
a best-response of a player to the DIU strategy, the algorithm
has broader applicability since it works for any mixed strat-
egy of the adversary. We discuss here the main intuition
behind Algorithm 2 and give a descriptive proof of Propo-
sition 4.1. Note firstly that the algorithm is presented here
with tie-breaking parameter α = 0 for simplicity but could
straightforwardly be adapted to any tie-breaking rule. In this
algorithm, H(j, i) denotes the expected payoff that player B
gains from battlefield i by allocating j troops to it, which is
computed via the equation in line 4. More specifically, since
α = 0, by allocating j troops to battlefield i, player B wins
the value vi if j is at least equal to player A’s allocation. Since
Gi is the marginal distribution of player A in this battlefield,
then Gi(j) is exactly the probability of this event, which im-
plies the expected gain of player B. There are (p+ 1)n terms
H(j, i) to compute yielding the complexityO(p ·n) to do so.

On the other hand, we denote Π(j, i) the optimal payoff of
player B when he is allowed to spend j troops over the set
{1, 2, . . . , i} of battlefields; thus, Π(p, n) is exactly the best-
response payoff of player B. The computation of Π(j, i) is
done by working backwards with the recursive equation given
in line 5. To spend j troops over i battlefields {1, 2, . . . , i},
player B has to choose k ∈ {0, 1, . . . , j} troops to allocate
across the first i− 1 battlefields (whose optimal payoff is de-
noted Π(k, i − 1)), and put the remaining (j − k) troops on
ith−battlefield (which induces the payoff H(j − k, i)). He
then optimizes the payoff to find Π(j, i) by selecting the num-
ber k which maximizes the summation between the payoffs
gained from these two parts. There areO(p ·n) terms Π(j, i)
needed to compute, each is done by comparing between at
most (p + 1) terms; thus it yields the complexity O(p2 · n)
to do so. Finally, the algorithm finds a best response strategy
yielding this optimal payoff with complexity O(p · n) as in
lines 7-9. Hence, we conclude the proof of Proposition 4.1.

Reversing the roles of A and B, we can construct a sim-
ilar algorithm with complexity O

(
m2 · n

)
to find the best

response payoff of player A against any given set of player
B’s marginals. Note also that the algorithm is presented here
with α = 0 for simplicity but it could straightforwardly be
adapted to any tie-breaking rule.

Algorithm 2: Dynamic programing algorithm searching
for player B’s best-response (tie-breaking rule α = 0).
Input: n,m, p ∈ N, v ∈ [vmin, vmax]n and marginals

{Gi}i=1,2,...,n of player A
Output: Payoff Π(p, n) and BR strategy

{
x̂B1 , · · · , x̂Bn

}
1 for j = 0, 1, . . . , p do
2 Π(j, 0) = 0
3 for i = 1, 2, . . . , n do
4 H(j, i) = viGi(j)
5 Π(j, i) = max

k=0,...,j
{Π (k, i− 1) +H (j − k, i)}

6 j = p
7 for i = n, n− 1, . . . , 1 do
8 x̂Bi = arg max

k=0,1,...,j
{Π (j − k, i− 1) +H(k, i)}

9 j = j − x̂Bi

4.2 Numerical Experiments
In practice, we first observe that a pure strategy instructing

players to allocate their resources following the DIU strategy
can be generated from Algorithm 1 in time O(n), which is
negligible even for extremely large values of the parameters.

On the other hand, since the marginal allocations at battle-
field i under the DIU strategy, FAD

i
and FBD

i
, are not known

in closed-form, we approximate them by their corresponding
empirical CDFs denoted F̄AD

i
and F̄BD

i
computed by drawing

“many” realizations of the DIU strategy from Algorithm 1.
Indeed, it is known by the Glivenko-Cantelli theorem [Vaart,
1998] that the empirical CDF converges uniformly towards
the actual CDF, with a maximum difference in O(K−1/2)
where K is the number of realizations drawn. Then, to guar-
antee that the approximation of the DIU’s CDF by its em-
pirical CDF does not affect the computed value of ε̄, we only
need to takeK ≥ O(n) (since ε̄ is of the order Õ(n−1/2) ac-
cording to the previous section). Overall, generating a good
approximation of the DIU’s marginal distribution therefore
takes time O(n2), still negligible even for large values. Fi-
nally, to compute ε̄, for each playerQ ∈ {A,B}, we compare
the expected payoff ΠQ(DIUA,DIUB) to player Q’s best-
response payoff obtained from Algorithm 2 against the set of
marginal distributions

{
F̄(−Q)Di

}
i

of player −Q.

We construct several numerical experiments using R to il-
lustrate the efficiency of using the DIU strategy as an approx-
imate equilibrium of discrete Colonel Blotto games.3 Our
experiments run on a computer with an Intel core i5-7500U
2.60GHz processor and 8GB of RAM. In all the experiments,
we keep α = 0 and λ = p/m fixed, thus the values of
m and p always have the same growth rate (up to the mul-
tiplicative constant λ); and we vary n and m. For each
set of values n,m, p, we independently generate a value for
each battlefield uniformly distributed in [vmin, vmax], with
vmin = 1 and vmax = 8. Then, for each instance of

3Our code for these experiments can be found at https://github.
com/dongquan11/Approx discrete Blotto
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n,m, p, (v1, v2, . . . , vn) we run the simulation 3 times, each
time computing the eCDFs with K = 10 · n to ensure not to
affect the evaluation on ε̄ and running Algorithm 2 with these
eCDFs to compute ε̄, and take the average of results.

Figure 1(a) shows the results. We first notice that when
m (and p) increases, the error ε̄ generally decreases in con-
sistency with Theorem 3.2. Moreover, when m is relatively
small, the error ε̄ is higher with instances having higher num-
ber of battlefields n. This is consistent with Theorem 3.2,
stating that when the ratios m/n and p/n are low (they de-
crease when n increases), the upper bound of ε̄ is not good.
For instances with higher values of m, these ratios are suffi-
ciently large to ensure that ε̄ decreases when eitherm or n (or
both) increase. This interpretation is also consistent with the
results shown in Figure 1(b). When the value of n increases,
at the beginning where the ratiom/n is still sufficiently large,
ε̄ decreases. However, since we keep m (and p) fixed in this
experiment, the ratio m/n gradually decreases, which makes
the errors to eventually get worse. Recall that, for each ex-
periment presented here, we independently generate a value
for each battlefield uniformly distributed in [vmin, vmax]; this
process explains the randomness observed in the plots.

We finally compare our work with the algorithm proposed
in [Behnezhad et al., 2017],4 which finds an exact equilibrium
of the game (we denote it Algorithm EQ). Table 1 shows the
computation time of evaluating the error in using DIU strat-
egy and elapsed time of Algorithm EQ for several instances.
We observe that it takes remarkably less time to compute the
DIU strategy payoffs and give an upper bound of the potential
error by using Algorithm 2. Note that the computation times
shown here include the time to compute the empirical CDF
of the DIU strategy by drawing sufficiently many realizations
(recall that we take K = 10 · n to ensure not to affect the
evaluation on ε̄) and the elapsed time of Algorithm 2. More-
over, the last column of Table 1 shows that the DIU strategy
payoffs are very close to the exact equilibrium payoffs, even
for instances with small values of the parameters n,m and p.

In conclusion, it is important to note that we do not claim
that our algorithm can replace more efficiently the algorithm
of [Behnezhad et al., 2017] (in fact, we are not computing the
same thing). However, our results show that, for large values
of n,m and p, the DIU strategy, which can be computed very
efficiently, can be safely used by the players as it provides a
good approximation to the equilibrium.

5 Sketch of The Proof of Theorem 3.2

In this section, we give the main elements of the proof of
Theorem 3.2 in its restatement. We note that, although the
main idea behind the DIU strategy is quite simple, the proof
of this theorem is non-trivial and requires careful analysis to
achieve the upper bound on ε̄. Due to space constraints, we
only give the very rough steps of the proof of inequality (3.6);
and we omit less important or more technical details. A com-
plete proof can be found in [Vu et al., 2018].

4We use the authors’ implementation from https://github.com/
Soben713/ColonelBlotto

Step 1: We start by rewriting (3.6). If player A plays
DIUA and allocate ŷ at battlefield i against player B’s
DIUB strategy, he strictly wins battlefield i with probability
FBD

i
(ŷ − 1) and has a tie with probability P (BDi = ŷ).

Hence, according to our general tie-breaking rule,

ΠA(DIUA,DIUB) =
n∑
i=1

[
vi

m∑
ŷ=0

FBD
i

(ŷ−1)P
(
ADi = ŷ

)]

+
n∑
i=1

[
αvi

m∑
ŷ=0

P
(
BDi =ŷ

)
P
(
ADi =ŷ

)]
:= Π1 + Π2. (5.1)

Similarly, ΠA

(
x̂A,DIUB

)
is also expressed as the sum-

mation of the terms related to FAD
i

and FBD
i

. However,
the closed-form expressions of these distributions are un-
known. Therefore, we need to approximate and compare
these payoffs via other terms, in particular the distributions
FA∗

i
and FB∗

i
. This can be obtained by using the follow-

ing lemma:

Lemma 5.1. Fix λ ≥ 1, ∀ε̄ > 0, ∃N∗ := Õ
(
ε̄−2 ln(ε̄−1)

)
:

∀n ≥ N∗, ∃M1 := O (n/ε̄) : ∀m ≥M1, ∀i = 1, 2, . . . , n,

sup
x̂∈N

∣∣∣∣FAD
i

(x̂)− FA∗
i

(
x̂

m

)∣∣∣∣ < ε̄, (5.2)

and similarly for FBD
i

and FB∗
i

.

Proof. To prove (5.2), we first deduce from the spe-
cial features of the rounding function rm that ∀x̂ ∈ N,
∀i∈{1, 2, . . . , n}, FAn

i
(x̂/m)≤FAD

i
(x̂)≤FAn

i
((x̂+1)/m).

Based on Hoeffding’s inequality and an intuition similar
to Slutsky’s theorem, we can prove that FAn

i
uniformly con-

verges towards FA∗
i

with rate n ≥ Õ
(
ε̄−2 ln(ε̄−1)

)
. Then

we get that, ∀n ≥ N∗ = Õ
(
ε̄−2 ln(ε̄−1)

)
,

FA∗
i

(
x̂

m

)
− ε̄

2
< FAD

i
(x̂) < FA∗

i

(
x̂

m

)
+

1

m

Vn
2viλ2

+
ε̄

2
.

Finally, we can choose M1 := nvmax

ε̄vminλ2 = O (n/ε̄) such

that for m ≥M1, 1
m

Vn

2viλ2 ≤ ε̄vminλ
2

nvmax

Vn

2viλ2 ≤ ε̄
2 .

Step 2: Using Lemma 5.1, we can approximate Π1 via FA∗
i

and FB∗
i

. However, we notice that this expression contains a
summation of m+ 1 terms, which leads to an error inO(mε)
(a large number whenm→∞) if we naively (approximately)
replace FAD

i
and FBD

i
by FA∗

i
and FB∗

i
. Hence, we must do

a finer approximation by noticing that P
(
ADi >

⌈
2 vi
Vn
p
⌉)

is
upper bounded by O(ε̄) as n ≥ N∗,m ≥M1. Therefore, by
carefully analyzing this summation, we have

Π1+
ε̄

8
Vn≥

n∑
i=1

[
vi

d2 vi
Vn
pe∑

ŷ=0

FB∗
i

(
ŷ−1

m

)(
FA∗

i

(
ŷ

m

)
−FA∗

i

(
ŷ−1

m

))]

≥Vn
2λ
−

n∑
i=1

Vn
2λm

− ε̄

8
Vn. (5.3)
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(a) m (and p) increases, λ = p
m

= 6/5, log-scale x-axis. (b) m = 425, p = 510, λ = 6/5, n increases.

Figure 1: Approximation error ε̄ of the DIU strategy stated in Theorem 3.2 as a function of the game parameters.

Instances
(λ = 6/5)

DIU error’s evaluation time Algo. EQ’s
elapsed time

|DIU−EQ|
Vn

∗

empirical CDF Algorithm 2 Total

n = 20,m = 50 0.12s 0.36s 0.49 2540.2s 0.0066
n = 35,m = 50 0.34s 0.67s 1.01s 10238.7s 0.0054
n = 50,m = 100 0.83s 1.99s 2.83s > 1.5 day N/A
n = 100,m = 5000 106.46s 1396.33s 1502.79s N/A N/A
n = 150,m = 8000 380.14s 5153.11s 5533.25s N/A N/A
n = 200,m = 10000 895.36s 10991.66s 11887.02s N/A N/A

*The maximum rescaled difference between DIU payoffs and exact equilibrium payoffs

Table 1: Comparison between DIU error evaluation time and Algorithm EQ.

Step 3: On the other hand, for any n ≥ N∗ and
m ≥M2 := O(nα/ε̄), for any pure strategy x̂A, we can
prove that P

(
BDi = x̂Ai

)
≤ ε̄/(2α); therefore5

Π2 ≥ 0 ≥
∑n

i=1
αviP

(
BDi = x̂Ai

)
− ε̄

2
Vn. (5.4)

Step 4: Finally, using Lemma 5.1, for n ≥ N∗,m ≥ M1,
we have the approximation

ΠA

(
x̂A,DIUB

)
=

n∑
i=1

viFBD
i

(
x̂Ai −1

)
+

n∑
i=1

αviP
(
BDi = x̂Ai

)
≤

n∑
i=1

vi

[
FB∗

i

(
x̂Ai − 1

m

)
+
ε̄

4

]
+

n∑
i=1

αviP
(
BDi = x̂Ai

)
≤

(
Vn
2λ
−

n∑
i=1

Vn
2λm

+
ε̄

4
Vn

)
+

n∑
i=1

αviP
(
BDi = x̂Ai

)
. (5.5)

By combining (5.1), (5.3), (5.4) and (5.5), we conclude
(3.6) by choosing M∗ := max{M1,M2}.

6 Concluding Discussion
In this work, we propose the DIU strategy, defined by a

simple algorithm, and prove it to be an approximate equilib-
rium of the discrete Colonel Blotto game. Our theoretical re-
sults also show precisely how large the number of troops and

5Here, we consider α 6= 0. In case α = 0, we have Π2 = 0 and
(3.6) is trivially implied by (5.1), (5.3) and (5.5).

the number of battlefields of the game should be to ensure a
certain level of approximation. We construct a best-response
dynamic programming algorithm that efficiently computes
the best-response to any marginal allocation of the opponent;
and use it to evaluate the approximation error of employing
the DIU strategy in practice via several numerical experi-
ments. Our work extends the scope of applications of dis-
crete Colonel Blotto games by trading off the accuracy with
the computational efficiency, which is useful for analyzing
games with large values of the parameters.

Note finally that Theorem 3.2 proves that the DIU strat-
egy is an approximate equilibrium, i.e., no unilateral devia-
tion can significantly improve a player’s payoff. This does
not directly imply that the marginals obtained under the DIU
strategy are close to the marginals of the exact equilibria, al-
though we conjecture that this is true as well (and leave its
proof for future work).
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