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Abstract

The Internet is now omnipresent in our lives. We use user-centric services, that is digital services
leveraging our personal data to provide personalized services of high value, for almost everything
from social networking to shopping, banking, or entertainment. With great utility, however, digital
user-centric services also brought very important security and privacy problems that threaten our
well-being, and the growth and sustainability of digital services. Our increased dependence on
online services also reinforced the need for improving the network infrastructure that support
them.

I argue that tackling these essential questions requires a combination of methods from game
theory and statistical learning. Game theory because the security, privacy, and performance of
user-centric services ultimately depend on the behavior of humans who respond to the incentives
provided by the system’s design, and game theory is the natural tool to model such strategic
interactions. Statistical learning because it is at the core of user-centric services, both to secure the
system and to exploit personal data.

This manuscript synthesizes my research efforts on game theory and statistical learning for
security, privacy and network systems. I first focus on the security aspects and describe my work
on developing and using game-theoretic models to design classification, resource allocation and
sequential learning methods in adversarial environment. Then I focus on the privacy aspects and
describe my work on developing and studying algorithms to learn from personal data and ana-
lyzing their impact on privacy. Finally, I focus on the network systems aspects and describe my
work on analyzing and improving the infrastructure’s performance. I conclude by describing the
perspectives of my research, summarized as the study of ‘humans versus machine learning’ and
containing two main directions: (i) developing algorithms to learn from data generated or pro-
vided by strategic human agents for security and privacy (using game theory), and (ii) studying
how machine learning algorithms inconspicuously affect humans in their daily lives and how to
make them more ‘human-friendly’.
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Chapter 1

Introduction

1.1 Context and motivation

The digital world has become central in our lives and economies. Over the last two decades, the
Internet enabled the emergence of an ecosystem of user-centric services that collect large amounts
of personal data of users and use it to provide high-value services through personalization. Today,
we use such digital user-centric services for almost everything from social networking to shopping,
banking, or entertainment.

Despite their success, digital user-centric services also brought very important problems of
security and privacy. On the security side, user-centric services are plagued with cyber-criminality
issues that have consequences on users at various levels, from the incessant presence of illegiti-
mate/undesired content that reduces the service utility to more severe problems such as identity
theft and data breaches that can seriously damage users integrity. On the privacy side, concerns
have been growing exponentially in recent times. Users are increasingly worried about the loss of
privacy incurred when revealing their personal data. They do not feel appropriately rewarded for
the data they give and this is amplified by the lack of transparency from services on how the data
is used and shared.

As we become more dependent of digital services, we naturally become more sensitive to their
security and privacy weaknesses; which reinforces the urge to improve them. We also become
increasingly dependent of the network systems and infrastructures (communication network and
cloud) that support digital services; which also reinforces the need to improve their performance.

Designing a secure, private or well-performing user-centric service cannot be done based on
technical engineering considerations only. Indeed, all three aspects are strongly dependent on how
human users use the system and will therefore be governed to a large extent by incentives and
strategic considerations. For security, attacks are generated by strategic human agents that can
adapt and one needs to take that into account in the defense’s design. For privacy, data is revealed
by human users who attempt to protect their privacy and one needs to take that into account in the
design of how data is collected and used. For the infrastructure, its performance is determined by
the load which is generated by human users so that reducing the load often necessitates to act on
the users demand.

In all three cases, we see that taking into account the incentives of the different parties at stake
is key in the design of the system, so that the system eventually works well. The research field that
does that broadly is called network economics. Taking incentives into account is typically done
using game theory as the natural tool to model the strategic agents and find the optimal system
design given agents’ incentives. The field of network economics has addressed with success a few
categories of systems in the past (e.g., peer-to-peer networks), leading to the design of systems that
indeed performed much better in practice. However, many questions remain open, in particular in
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2 CHAPTER 1. INTRODUCTION

the area of security and privacy of user-centric services.
Another key aspect of user-centric services is that they heavily rely on statistical learning for

at least two purposes: to exploit users personal data to predict their preference and increase the
service value, and to detect attacks on their services. Machine learning is a well-established field
with many recent advances. However, the context of security and privacy of user-centric services
is special and yields many new challenges in statistical learning, in particular because one needs to
take into account the presence of strategic agents (attackers or privacy-conscious users) who can
alter the data, but also because it raises issues related to the very large scale of the problem due to
the number of users of user-centric services.

My research efforts in the past years have been dedicated to working on game theory and
statistical learning for tackling problems of security, privacy and network systems performance.
Although my work was often motivated by applications that guide the models that I consider, I
often worked on the methods themselves (solving new games, developing new statistical learning
methods or studying existing ones in a new game-theoretic context).

1.2 Organization of the manuscript

This manuscript synthesizes my research contributions on game theory and statistical learning for
security, privacy and network systems. It is organized in three chapters.

Chapter 2 summarizes my work on game theory and statistical learning for security. At a high
level in this work, I develop and use game-theoretic models to design learning and resource allo-
cation methods for security that work well in adversarial environment. I first study classification
in adversarial environment using a new nonzero-sum game model to find attack detection methods
adapted to the strategic setting. Then I investigate the famous Colonel Blotto game for alloca-
tion of security resources in adversarial environment. Finally, I tackle the question of sequential
learning in adversarial environment under discounted losses.

Chapter 3 summarizes my work on game theory and statistical learning for privacy. At a
high level in this work, I study how algorithms to learn from personal data affect privacy. I first
investigate the problem of learning from personal data revealed by privacy-conscious users who
may choose the precision of the data revealed, using a new game that models the public good
nature of the learning outcome. Then I investigate the possibilities of learning from personal data
already publicly available (in particular matching identities across multiple online sources at very
large scale) and how this affects users privacy.

Chapter 4 summarizes my work on game theory and statistical learning for network systems.
Here, I focus on the infrastructure’s performance evaluation and improvement. I first study how
causal analysis can be applied for communication networks performance analysis. Then I investi-
gate new incentive schemes to reduce network congestion and flatten the demand curve. Finally, I
look at how to allocate resources in a cloud.

Finally, in Chapter 5, I conclude by presenting the perspectives that my past work has opened
for my future research.

Biographical note

The work presented in this manuscript constitutes the main part of my research since the end of my
PhD. Some of my works have been omitted in the interest of thematic consistency. My complete
set of contributions is represented by my papers listed in Appendix A.
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Prior to starting working in network economics, I did my PhD in the area of network traffic
modeling. There I looked at techniques from probability and stochastic processes, in particular
long-range dependence and large deviations. I then spent one year as a postdoc working on ap-
plications of large deviations in the medical area, before moving to game theory and network
economics during my second year of postdoc. Although the works presented in this manuscript
are in a different area than my PhD and first year of postdoc, my background in probability has
been of great use and, as I am starting to dig deeper into the side of statistical learning and its
interaction with game theory, I feel that this background will become even more important.
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Chapter 2

Game theory and statistical learning for
security

This chapter covers the work in papers [8, 9], [30, 32, 33]. This work was done in collaboration
with John Musacchio (UC Santa Cruz), Shankar Sastry (UC Berkeley), Galina Schwartz (UC
Berkeley), Jean Walrand (UC Berkeley); and with the following students: Lemonia Dritsoula
(PhD student at UC Santa Cruz whom I informally advised for the work presented here), Nina
Grgić-Hlača (intern at EURECOM under my supervision), Vijay Kamble (PhD student at UC
Berkeley who came to EURECOM as an intern under my supervision during his PhD). The
ideas developed here also led to the PhD of Quan Vu which will start in Dec. 2016 under my
supervision and in collaboration with Alonso Silva (Nokia Bell Labs).

This chapter summarizes my work relating to game theory and statistical learning for security.
Throughout this work, my main focus was to work on developing defense methods that take into
account the strategic nature of attackers, which naturally leads to game-theoretic analysis. I do
believe that using in security standard methods (e.g., learning methods) that neglect the strategic
nature of the attacker is one of the key reasons for underperformance; and that it is therefore crucial
to rethink those methods carefully. I also focused more on developing and analyzing generic
models that lead to simple and generally applicable insights rather than looking at very specific
models for given security situations. This is mainly justified by the fact that many methods are
common to various security applications; e.g., classification for attack detection is used similarly
for simple spam detection or for life-threatening intrusions.

In the remainder of the chapter, I sequentially describe my contributions to classification in ad-
versarial environment for attack detection, security resource allocation in adversarial environment,
and online decision making with adversarial losses.

2.1 Adversarial classification

In many areas relating to digital systems (and in many more areas) security relies on detecting
attacks, which is outsourced to a machine learning algorithm (classification or anomaly detection),
see e.g., [Taylor et al., 2007, Tsai and Yu, 2009, Guzella and Caminhas, 2009, Song et al., 2010,
Caruana and Li, 2012]. In this section, we investigate that problem of detecting attacks.

2.1.1 Context

Recent works from the security community mostly focused on finding new features that are good
for the learning algorithm performance, and at implementing the systems using standard learning

5



6 CHAPTER 2. GAME THEORY AND STATISTICAL LEARNING FOR SECURITY

algorithms developed for non-adversarial scenarios (see, e.g., [Stringhini et al., 2012] or the refer-
ences above). It was shown, however, on the example of SpamBayes, that a spammer controlling
only 1% of the training set can make the filter useless in two ways: by making it unable to detect
spam or by making it mark as spam other messages [Nelson et al., 2009]. It is therefore of crucial
importance to rethink the learning algorithms that are used for security applications, which are by
essence adversarial scenarios.

The study of classification algorithms in adversarial environment was pioneered by [Dalvi
et al., 2004] and a significant literature followed [Lowd and Meek, 2005, Globerson and Roweis,
2006, Barreno et al., 2010, Laskov and Lippmann, 2010, Nelson et al., 2010, Huang et al., 2011,
Zhou and Kantarcioglu, 2014, Li and Vorobeychik, 2015], especially intensified in recent years
where experiments showed in practice the loss of performance of algorithms due to strategic at-
tackers [Nelson et al., 2009, Sommer and Paxson, 2010, Thomas et al., 2013, Wang et al., 2014].
This literature is essentially divided in two parts. The first part studies ‘poisoning attacks’, where
the attacker can alter the training set [Globerson and Roweis, 2006, Barreno et al., 2010, Laskov
and Lippmann, 2010,Huang et al., 2011,Zhou and Kantarcioglu, 2014]. All of these studies make
assumptions on the attacker knowledge and capabilities and propose defenses that are either based
on simple ideas such as using robust statistics (which is inefficient against an adaptive adversary)
or based on optimization against a worst-case attack (which is very pessimistic and leads to poorly
performing algorithms in practice). The second part studies ‘evasion attacks’, where the attacker
cannot alter the training set and instead needs to reverse engineer the fixed classifier in order to
find a negative instance of minimal cost [Lowd and Meek, 2005,Nelson et al., 2010,Li and Vorob-
eychik, 2015]. This literature shows that reverse engineering a linear or convex-inducing classifier
is ‘algorithmically easy’. To mitigate this, it proposes as an intuitive defense to use random clas-
sifiers; but no formal justification is given that would help defining the set of classifiers to use and
their probabilities.

Interestingly, the idea of randomizing the defense in order to be less predictable appears very
naturally and with formal justifications in the literature on games for security that uses game theory
to study security problems. This literature was pioneered in 2003 in the context of intrusion
detection [Alpcan and Başar, 2003], and later received a large attention, see for instance [Chen
and Leneutre, 2009, Alpcan and Başar, 2010, Tambe, 2011, Manshaei et al., 2013] and the many
reference therein. Typically, in these works, the defender has limited resources to defend several
assets and decides on where to allocate his resources while the attacker decides on where to attack.
Then, by computing the Nash equilibrium, one finds that the defender must randomize to avoid
predictability (mixed strategies), and that the equilibrium strategy of the defender depends only
on the attacker’s payoff. On the contrary, if the attacker was naive (i.e., using a fixed strategy
regardless of the defender’s action), the optimal defender’s strategy would depend only on his
own payoff. This illustrates the sharp difference between decision making by optimization (where
the attacker is considered naive) and the game-theoretic approach which assumes that the attacker
is strategic and adapts to the defender’s action. With this idea in mind, a few data-mining papers
applied game theory to learning in adversarial classification scenarios, but using zero-sum games
which corresponds to a worst-case assumption [Kantarcioglu et al., 2011, Zhou et al., 2012]. The
only exception to our knowledge is the work of [Brückner and Scheffer, 2011, Brückner et al.,
2012], but it assumes restrictions on the possible classifiers that do not enable optimizing the
classification.
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2.1.2 Our contributions

In this context, we proposed a new model to study strategic classification in a nonzero-sum game,
in a more flexible framework (not assuming restrictions and more flexible than worst case) [32,33],
[9], and provided a complete analysis of the model that reveals intuitive messages on how to
perform classification in the presence of an attacker. We present here the model and the main
results derived form it.

Model

We model the interaction as a game between a defender who chooses a classifier to distinguish
between attacks and normal behavior based on a set of observed features and an attacker who
chooses his attack features (class 1 data). Normal behavior (class 0 data) is random and exogenous.
The attacker’s objective balances the benefit from attacks and the cost of being detected while the
defender’s objective balances the benefit of a correct attack detection and the cost of false alarm.

Specifically, consider a set V ⊆ Rd, d ≥ 1, of possible feature vectors that we assume finite.
The set of all possible classifiers is then the set of all possible mappings from the observed attack
vector to a classification decision 0 or 1: C = {c : V → {0, 1}} = 2V. We assume that there is a
prior probability p ∈ (0, 1) of facing an attacker (class 1) and that the non-attacker (class 0) has a
fixed distribution PN onV. We define the one-shot complete information game, denoted

G = (V,C, p, cd, cfa, PN),

as the game between the attacker and the defender where the set of pure actions of the attacker is
V, the set of pure actions of the defender is C, and the payoffs are:

UA(v, c) = R(v) − cd1c(v)=1, (2.1)

where R : V → R+ is the “reward function” that describes the gain of the attacker when choosing
feature vector v, and cd is a cost in case of detection; and

UD(v, c) = −R(v) + cd(v)1c(v)=1 −
1 − p

p
cfa

∑
v′∈V

PN(v′)1c(v′)=1, (2.2)

where cfa is a cost of false alarm. The defender’s payoff can be interpreted as follows. The first
component captures the expected loss to an attacker. We assume that this part equals what is gained
by the attacker. Then, since the defender interacts with an attacker with chance p, the expected
loss is −pUA(v, c). The second component captures the expected loss due to false alarms. Since
the non-attacker is present with chance 1 − p, the expected false alarm cost is 1 − p times the
chance that a non-attacker would pick a v that gets classified as an attacker. Finally, the whole
payoff function is scaled by the constant 1/p for the convenience of having the term UA(v, c)
appear unscaled in the payoff. This scaling does not affect the Nash equilibrium strategies of the
game.

In our work, we mainly focus on the Nash equilibrium of game G. Before describing our
results, let us mentioned that the game is clearly best-response equivalent (as defined in [Rosenthal,
1974]) to a zero-sum game where the defender’s payoff is unchanged and the attacker’s payoff is
−UD. This is because the false alarm part in (2.2), − 1−p

p cfa
∑

v′∈V PN(v′)1c(v′)=1 does not depend
on the attacker’s strategy, hence adding it to the attacker’s payoff does not change his best response
and the Nash equilibrium strategies are therefore the same in the zero-sum game and in the original
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game. We will use this equivalence to derive our results (see Theorem 2.1.3 below). It is known
that, numerically, zero-sum games can be solved in polynomial time using Linear Programming
techniques. Yet, two main problems subsist. First, the size of the defender’s action set is very large
(of the order of 2|V|) since it contains all functions from V to {0, 1}, so that a direct numerical
solution is not possible in reasonable cases.1 Second, applying known algorithms to numerically
solve zero-sum games does not give intuition on the structure of the equilibrium, whereas our
ambition here is to derive an analytical characterization of the equilibrium strategies. The results
presented in the next section address both problems.

Results

In [32, 33], we analyzed the model above only for the case where V = R, that is where the
classification is based only on a scalar feature (in [32], the payoff structure is a bit more general
than (2.1)). In [9], we give the general solution for any finite V with utilities defined as in (2.1)
and (2.2). We present these general results here and discuss some extensions at the end.

We consider mixed strategies, that is a probability distribution α on V and β on C, with
the standard bilinear extension of the payoffs and definition of the Nash equilibrium (hereafter
shortened NE) [Fudenberg and Tirole, 1991].

A first problem when looking for the Nash equilibrium of G is that the action space C of
the defender is very large. Our first result establishes that we can restrict to a much smaller set.
Before stating the result, we define the probability of detection function as the probability of class
1 classification (or detection) given the attack vector v and the defender’s strategy β:

π
β
d (v) =

∑
c∈C

βc1c(v)=1, ∀v ∈ V. (2.3)

We define the set of threshold classifiers

CT = {c ∈ C : c(v) = 1R(v)≥t,∀v ∈ V for some t ∈ R},

and assume that CT ⊆ C, which holds for any reasonable C, in particular for C = 2|V|. Threshold
classifiers are simple and intuitive classifiers where the defender compares what the attack reward
would have been from the observed attack vector to a threshold instead of computing a mapping
from any possible attack vector to a detection probability. In our model, we established that it is
sufficient to consider only threshold classifiers:

Theorem 2.1.1. For any NE (α,β) of G = (V,C, p, cd, cfa, PN), there exists a NE of GT =

(V,CT , p, cd, cfa, PN) with the same α and equilibrium payoff pair and the same πd in the sup-
port of the non-attacker’s distribution.

Theorem 2.1.1 shows in particular that, when restricted to using only threshold classifiers, the
defender achieves the same equilibrium payoff. Hence, although there may exist Nash equilibria
where the defender uses other classifiers, he does not lose anything by using only threshold classi-
fiers. The proof goes through multiple steps detailed in [9]. We first show that the payoffs depend
on the defender’s strategy β only trough the probability of detection function πd. Then we show
that at a NE, the probability of detection is increasing in R(v), that is, a more highly rewarding

1Note that a direct reduction to an action set {0, 1} for the defender (where one would consider functions of v through
the maxmin strategy which is known by the maxmin theorem to yield the same value as the minmax) is not possible
because, for given actions v and c, the payoffs depend on the entire function c and not only on c(v).
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vector is classifier as attacker with a higher probability. Finally, we show that every probability of
detection function that is increasing in R can be achieved with a strategy β putting positive weight
only on classifiers in CT .

Theorem 2.1.1 is important because it reduces the strategy space of the defender considerably
(making the game solvable), but also because it reveals an intuitive message on how classification
should be performed in this adversarial setting: the defender should use classifiers that correspond
to thresholds on the attacker’s reward. This is in contrast with standard classifiers such as logistic
regression or SVM which use a fixed shape of the decision boundary (in some space) and are
therefore bound to be suboptimal (unless by luck the reward function happens to have the pre-
defined shape). Instead here, the decision boundary should be adapted to the attacker’s reward
function.

To complete the analysis, we provided an efficient algorithm to compute all Nash equilibria
and a compact characterization of the possible forms of a Nash equilibrium. We first showed that
we can also reduce the attacker’s strategy space to the set

VR = {r ∈ R+ : r = R(v), for some v ∈ V} (2.4)

of all unique reward values. We denote by ri, i ∈ {1, · · · , |VR| the elements of this set and assume
that they are ordered. Defining the non-attacker’s reduced probability measure onVR by

PR
N(r) =

∑
v′

PN(v′ ∈ V)1R(v′)=r, (2.5)

the result can be stated as follows.

Proposition 2.1.2. If (α,β) is a NE of GT = (V,CT , p, cd, cfa, PN), then (α∗,β) is a NE of GR,T =

(VR,CT , p, cd, cfa, PR
N) with the same equilibrium payoff pair where α∗ri

=
∑

v j∈V,R(v j)=ri

αv j , ∀ri ∈

VR.

Note that, although VR is not rigorously a subset of V, VR is a reduced strategy space in
the sense that R is clearly a surjection from V to VR. Moreover, since β is a probability on CT ,
any two attack vectors with the same reward have the same probability of detection, so that by
abuse of notation we can define the probability of detection function as a function of the reward
by πd(r) := πd(v), where r = R(v). Then, utilities in GR,T are defined by adapting (2.1)-(2.2) in the
obvious way.

The proof of Proposition 2.1.2 is given in [9] where we also provide an easy way from the NE
(α∗,β) of GR,T to recover a NE (α,β) of GT . We can therefore focus on the simpler problem of
computing the NE of GR,T , which is given in our last main result:

Theorem 2.1.3. Algorithm 1 finds all NE of the classification game GR,T . Moreover, if (α,β) is a
NE, then, there exists k ∈ {1, . . . , |VR|} such that

β = (0, . . . , 0, βk, . . . , β|VR |, β|VR |+1),

α = (0, . . . , 0, αk, . . . , α|VR |),

where

βi =
ri − ri−1

cd
, ∀i ∈ {k + 1, . . . , |VR|}, (2.6)

αi =
1 − p

p
cfa

cd
PR

N(ri), ∀i ∈ {k + 1, . . . , |VR| − 1}, (2.7)

and βk, β|VR |+1 ≥ 0 and αk, α|VR | ≥ 0 are such that
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(i) βk ∈ (0, rk−rk−1
cd

), β|VR |+1 = 0, and
αk satisfies (2.7), α|VR | > 0; or

(ii) βk = 0, β|VR |+1 > 0, and
αk ∈ (0, 1−p

p
cfa
cd

PR
N(rk)), α|VR | satisfies (2.7); or

(iii) βk = 0, β|VR |+1 = 0, and

αk∈[0,min( 1−p
p

cfa
cd

PR
N(rk), 1−

∑|VR |−1
i=k+1 αi)], α|VR |≥0; or

(iv) βk ∈ [0, rk−rk−1
cd

], β|VR |+1 ≥ 0, and
αk, α|VR | satisfy (2.7).

Theorem 2.1.3 provides both an algorithm (Algorithm 1) that finds all NE and a compact
characterization of the restricted number of possible forms that a NE can have. Interestingly, we
observe that the defender assigns a weight to a reward ri that is positive and proportional to the
marginal reward increase at that point, on a support that goes until the highest reward r|VR |. This
is somewhat counter-intuitive as it implies that the defender includes at NE with positive weights
classifiers that almost never classify as attacker even for a high reward and even if the probability
that a non-attacker uses this reward is arbitrarily small. We also observe in Theorem 2.1.3 the
fact that the attackers mimics the non-attacker’s distribution (proportionally) on a support that
corresponds to the defender’s support.

The proof of Theorem 2.1.3 relies on the key observation mentioned above that the game GR,T

is best-response equivalent (see [Rosenthal, 1974]) to a zero-sum game where the defender’s pay-
off is unchanged and the attacker’s payoff is −UD. This is because the false alarm part in (2.2),
−

1−p
p cfa

∑
v′∈V PN(v′)1c(v′)=1 does not depend on the attacker’s strategy, hence adding it to the at-

tacker’s payoff does not change his best response. Then, the NE strategies of the defender and
attacker are solutions of dual Linear Programs and we compute them by looking at the extreme
points of a well defined polyhedron. The multiplicity of NE observed in special cases in Theo-
rem 2.1.3 is also in accordance with the relationship between degeneracy and multiplicity of the
primal and the dual optimal solutions of a Linear Program. Note finally that there are known
algorithms to compute the solution of a Linear Program in polynomial time. Our algorithm (Al-
gorithm 1) also runs in polynomial time but its advantage lies in the intuition about the solutions
that it provides (i.e., the analytical characterization).

We also explored qualitatively and quantitatively the impact of the non-attacker and underlying
parameters on the equilibrium strategies. In particular, we discuss in [9] how to compute using the
NE found above the benefit of acquiring new features to do the detection (e.g., installing a new
sensor), which should eventually be compared to the investment cost.

Extensions

The model presented above was first introduced in [32] in the case of a single feature (scalar
attack vector). In [33], we also studied the case of a single feature, but with a more general payoff

model where the cost of detection cd can depend on v. In this paper, we also restrict the defender
to threshold classifiers, but without proof at that time. Then we show that, under conditions of
discrete concavity of R(v)− cd(v) and of R(v), we still can compute the NE using similar LP based
methods and the defender’s NE strategy still has a contiguous block of non-zero weights (actually,
of tight inequality constraints) until the highest threshold.
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Algorithm 1: How to compute the NE (α,β)

for type = 1, 2 do
construct β for s ∈ {1, . . . , |VR|} using Algorithm 2
find (β1,2, s∗1,2) that maximize UD

1,2

if UD
1 > UD

2 then
β ← compute-β(s∗1, 1); α← compute-α(s∗1)

if UD
1 < UD

2 then
if s∗2 is unique then

β ← compute-β(s∗2, 2); α← compute-α(s∗2)

else
// denote s∗2a and s∗2b = s∗2a+1 the 2 solutions
βa←compute-β(s∗2a, 2); βb←compute-β(s∗2b, 2)
β← convex hull of βa,βb

α← compute-α(s∗2b)

if UD
1 = UD

2 then
if s∗2 is unique then
// s∗2 = s∗1
β1 ← compute-β(s∗1, 1); β2 ← compute-β(s∗1, 2)
if β1 , β2 then

β← convex hull of β1,β2

else
β ← β1

α← compute-α(s∗1)

else
// denote s∗2a and s∗2b = s∗2a+1 the 2 solutions
// the type I and type IIa solutions are identical
βa←compute-β(s∗2a, 1); βb←compute-β(s∗2b, 2)
β← convex hull of βa,βb

α← compute-α(s∗2b)

Algorithm 2: Compute-β(s, type)

for i = 1 to s − 1 do
βi ← 0

for i = s + 1 to |VR| do
βi ←

ri − ri−1

cd

βs ← 1type=1(1 −
∑|VR |

s+1 βi)

β|VR |+1 ← 1type=2(1 −
∑|VR |

s+1 βi)
UD

type ← min[Λβ] − µ′β
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Algorithm 3: Compute-α(β, k)

// β is the set of all convex combinations if multiple
for i = 1 to k − 1 do

αi ← 0
for i = k + 1 to |VR| − 1 do

αi ←
1 − p

p
cfa

cd
PR

N(ri)

if βk > 0 for some β then

αk ←
1 − p

p
cfa

cd
PR

N(rk)

α|VR | ← 1 −
∑|VR |−1

i=k αi

else if β|VR |+1 > 0 for some β then

α|VR | ←
1 − p

p
cda

cd
PR

N(r|VR |)

αk ← 1 −
∑|VR |

i=k+1 αi;

else if βk = β|VR |+1 = 0 then
for i = 1 to k − 1 and i = k + 1 to |VR| − 1 do

α1
i ← αi, α2

i ← αi

α1
k ← 0

α2
k ← min

(
1−p
p

cfa
cd

PR
N(rk), 1 −

∑|VR |−1
i=k+1 αi

)
α1,2
|VR |
← 1 −

∑|VR |−1
i=k α1,2

i

α← convex hull of α1,α2

Finally, in recent work (not yet published), we extended the model to a Bayesian game that
takes into account the incomplete information of the defender on the attacker’s payoff. We as-
sumed that the attacker has a type θa ∈ ΘA which defines his reward function RθA(v). Then, the
payoffs are defined as before. There is a probability PΘA on the attacker’s type that is common
knowledge. For this game, we looked for the Bayesian Nash equilibrium (BNE). On the attacker’s
side, we showed that at BNE, the expected strategy across all types is the same as found in the
complete information game of before. We are currently analyzing the defender sides to see if we
can identify a small set of strategies which are sufficient as in the complete information case.

Summary of our contribution to adversarial classification:
We propose a nonzero-sum game model between an attacker choosing class 1 feature values
and a defender choosing the classifier. We compute all NE and give a compact characterization
revealing that classification should be done in a new way: by using a threshold on the attacker’s
reward. We qualitatively and quantitatively explore the system and propose extensions to more
general payoffs and to incomplete information.

2.2 Security resource allocation

Even before the problem of classification, i.e., making the correct decision upon observation of an
event, security often relies on the appropriate allocation of a finite amount of defense resources
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(be it human or computer resources) to monitor potential security attacks. We now focus on this
question of security resource allocation.

2.2.1 Context

Approaches to defense resource allocations for intrusion detection have been mentioned in the
previous section, but they all consider the objective of detecting a single intrusion. For more
complex systems that contains several elements, a more global approach is needed to minimize
the number of compromised elements. Such approaches have been proposed in different contexts
such as airport security, see for instance the survey [Tambe, 2011]. Those, however, consider
Stackelberg games where the defender’s strategy is known to the attacker, which does not apply
well to certain security scenarios such as cybersecurity. A key problem in this area is that all
strategic resource allocation games in simultaneous moves are derivative of the famous Colonel
Blotto game introduced by Borel in 1921 [Borel, 1921]. In the Colonel Blotto game, two players
allocate an exogenously given amount of resources to a fixed number of battlefields with given
values (corresponding to elements of the infrastructure). Each battlefield is then won by the player
who allocated more resources to it, and each player maximizes the aggregate value of battlefields
he wins.

Despite its apparent simplicity, the Colonel Blotto game is very intricate. The first solution
was given by Borel and Ville in 1938 [Borel and Ville, 1938] for the case of two players with
symmetric resources and two battlefields. In 1950, Gross and Wagner [Gross and Wagner, 1950]
extended this solution to the game with two players with asymmetric (unequal) resources and two
battlefields, and to the game with two player with symmetric resources and three battlefields. The
case of asymmetric player resources and an arbitrary number of battlefields remained unsolved
until 2006. Only then, a complete Nash equilibrium solution was given for the case of asymmetric
player resources and an arbitrary number of battlefields by Roberson [Roberson, 2006], but only
if all battlefields have the same value, which is not realistic in some applications.

Since Roberson’s seminal contribution, a number of variants of the Colonel Blotto game have
been proposed and studied, e.g., versions that consider sequential moves instead of simultaneous
moves [Powell, 2009, Rinott et al., 2012], coalitional versions [Kovenock and Roberson, 2012a],
versions with endogeneous resources [Kovenock et al., 2010] or graph dependences [Masucci and
Silva, 2014], etc. (see also [Kvasov, 2007, Arce et al., 2012] and a survey in [Roberson, 2010]).
Yet, with the exception of [Hortala-Vallve and Llorente-Saguer, 2012] which only considers very
partial solutions where a pure equilibrium exist, all studies with asymmetric player resources and
an arbitrary number of battlefields have been restricted to the case of identical battlefields.

2.2.2 Our contributions

In this context, we propose a solution of the Colonel Blotto game for asymmetric players and an
arbitrary number of battlefields, under a restriction on the minimum number of battlefields with
every unique value. We describe below the main results; all details can be found in [30].

Model and formal definitions

We denote by A and B the two players and by XA ∈ R+ and XB ∈ R+ their respective resources.
Without loss of generality, we assume that XA ≤ XB. Let n be an integer denoting the number
of battlefields. Each battlefield j ∈ {1, · · · , n} is endowed with a value v j ∈ R+. We denote by
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v = (v1, · · · , vn) the vector of battlefield values, and by V =
∑n

j=1 v j the aggregate value of all
battlefields.

Players choose how to allocate their resources between the battlefields, i.e., each player chooses
how to distribute his (given) resources between the battlefields. Formally, a pure strategy of player
p ∈ {A, B} is a vector xp = (x j

p) j∈{1,··· ,n} ∈ R
n
+ satisfying the budget constraint

∑n
j=1 x j

p ≤ Xp, where

x j
p ∈ R+ denotes the amount of resources allocated to battlefield j by player p. We let S p denote

the set of pure strategies for player p:

S p =

xp ∈ R
n
+ :

n∑
j=1

x j
p ≤ Xp

 , (p ∈ {A, B}).

For each battlefield j ∈ {1, · · · , n}, the player who dedicates the highest amount of resources
wins this entire battlefield. In case of a tie, player B (the player with higher total amount of
resources) wins the battlefield. Hence, for each battlefield j ∈ {1, · · · , n}, if x j

A > x j
B then player A

the battlefield, and if x j
A ≤ x j

B then player B wins it. Each player’s payoff equals to the sum of the
values of the battlefields that he wins.

Let B(XA, XB,v) denote the above presented Blotto game. The game B is a one-shot game
in which players A and B simultaneously choose their allocation of forces to the battlefields to
maximize the total value of the battlefields they win. The gameB is a complete information game.
The parameters of the game (XA, XB, n and v), players’ action spaces and objectives are common
knowledge.

In most cases of interest, that is when for each player the expected payoff is strictly positive,
no pure strategy Nash equilibrium exists. We therefore will focus on mixed strategy equilibria. A
mixed strategy for player p ∈ {A, B} is an n-variate distribution Pp : Rn

+ → [0, 1] whose support is
contained in S p. For a given n-variate distribution, we denote by F j

p : R+ → [0, 1] the univariate
marginal distribution of resources allocated by player p to battlefield j.

Our results will require that we can make groups of battlefields of the same value with a large
enough number of battlefield in each group. To precisely state these conditions and establish our
framework, we introduce the following definitions. Let k denote the number of different battlefield
values, and let {w1, · · · ,wk} denote the corresponding set of unique battlefield values. Formally
we have wi1 , wi2 for all i1 , i2 and, for all j ∈ {1, · · · , n} there exists i ∈ {1, · · · , k} such
that v j = wi. For i ∈ {1, · · · , k}, define C(i) as the set of battlefields with value wi, i.e., C(i) ={
j ∈ {1, · · · , n} : v j = wi

}
. Define, for each i ∈ {1, · · · , k}, ni = #C(i) the number of battlefields of

value wi (again, ni ≥ 2 for all i) and Vi =
∑

j∈C(i) v j = niwi the aggregate value of all battlefields of
value wi. Note that

∑k
i=1 Vi = V .

Results

With the notation introduced above, we can state our results. We start by characterizing the unique
equilibrium marginal distributions for the game B(XA, XB,v):

Theorem 2.2.1. Assume that, for all groups of battlefields i ∈ {1, · · · , k}, we have

2
ni
<

XA

XB
≤ 1. (2.8)

Then, in equilibrium, each player allocates resources with the following unique univariate marginal
distribution functions ∀ j ∈ {1, · · · , n}:
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(i) For player A:

F j
A(x) =

(
1 −

XA

XB

)
+

x
2v j

V XB

(
XA

XB

)
, x ∈ [0,

2v j

V
XB]; (2.9a)

(ii) For player B:

F j
B(x) =

x
2v j

V XB
, x ∈ [0,

2v j

V
XB]. (2.9b)

The proof works by establishing a one-to-one correspondence between the solution of the
Blotto game and the solution of n independent all-pay auctions, with the later established in [Hill-
man and Riley, 1989, Baye et al., 1996]. Theorem 2.2.1 (and the subsequent results) requires that
condition (2.8) holds. First note that it implies that ni ≥ 3, i.e., each group of battlefields has at
least three battlefields of the same value. This ensures that we will be able to construct an n-variate
distribution with the marginals in Theorem 2.2.1 (see Theorem 2.2.3 below and the discussion that
follows); which is necessary to prove Theorem 2.2.1. Condition (2.8) also restricts the disparity
of players resources. However, even for a large asymmetry, this condition will be satisfied as soon
as the number of battlefields is large enough in each group. We note that such an assumption is
often made in the literature to restrict the complexity of the analysis, for instance in [Kovenock
and Roberson, 2012b]. The cases in which condition (2.8) is not met can be studied separately but
are of limited practical interest.

Under the condition of Theorem 2.2.1, we have unique equilibrium marginals. These marginals
are uniform, as in the game with identical battlefield values, but now the marginal’s support is
proportional to the battlefields value. Theorem 2.2.1 allows us to obtain the equilibrium player
payoffs:

Corollary 2.2.2. Under condition (2.8) of Theorem 2.2.1, in equilibrium, player A and B expected
payoffs are V XA

2XB
and V

(
1 − XA

2XB

)
, respectively.

Remarkably, Corollary 2.2.2 yields equilibrium payoffs identical the payoffs in the game with
equal battlefield values.

Theorem 2.2.1 describes only the marginal distributions. So far, we merely hypothesized the
existence of some n-variate distribution with such marginals that respects player resource con-
straints. Next, we establish the existence of such n-variate distribution.

Theorem 2.2.3. Under condition (2.8) of Theorem 2.2.1, for each player p ∈ {A, B}, there exists
an n-variate distribution with support contained in S p such that the marginals are given by (2.9a)
- (2.9b) for all battlefields j ∈ {1, · · · , n}.

The proof is done by constructing an n-variate distribution with the correct marginals that
respects the players budget constraints. Roughly speaking, the construction consists of two steps.
First, we make a deterministic allocation to each group of battlefields with the same value. The
amount of allocated resources is proportional to the aggregate value of the group. Second, within
each group the randomization is done as in Roberson [Roberson, 2006]. This is possible because,
by our assumption, each group has enough battlefields. Our construction allows to obtain an
equilibrium n-variate distribution with the correct marginals respecting the budget constraints.
Still, there may exist other solutions that randomize the global resource allocation between the
different groups of battlefields with a common value.
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We are currently considering various extensions of this work, in particular to remove the re-
striction, to find easier solutions in the limit of a large number of battlefields, and to analyze the
case where the value of a battlefield is not the same to each player (non constant-sum).

Summary of our contribution to security resource allocation:
We give a solution of the Colonel Blotto game for asymmetric players and an arbitrary number
of battlefields, under a restriction on the minimum number of battlefields of each unique value.

2.3 Adversarial online decision making with discounted losses

Finally, in many real-world situations, the defender is uncertain about the payoff or the behavior
of the attacker she is facing. Many of these situations can be modeled as online decision mak-
ing problems where the defender sequentially makes decisions based on previous observations.
This raises the question of how to select actions which we tackle here in the specific context of
discounted losses.

2.3.1 Context

In many scenarios involving repeated decision-making in uncertain environments, one desires
robust performance guarantees. The well-known regret minimization paradigm captures this ob-
jective by formulating the problem as a repeated game between the decision-maker and the en-
vironment, which is modeled as an adversary. The goal of the decision-maker in this game is
to design an adaptive and possibly randomized algorithm for choosing actions (henceforth, algo-
rithm/strategy/policy) so as to minimize regret, which is defined as the difference between the ex-
pected loss incurred by the algorithm, and the loss incurred by the best fixed action that could have
been chosen in hindsight against the sequence of actions chosen by the adversary. In this setting,
several no-regret algorithms are now known, which ensure that the time-averaged regret asymp-
totically vanishes in the long run, not just in expectation, but with probability 1, irrespective of the
sequence of actions chosen by the adversary. The first study of regret minimization in repeated
games dates back to the pioneering work of Hannan [Hannan, 1957], who introduced the notion
of regret optimality in repeated games and proposed the earliest known no-regret algorithm. Since
then, numerous other such algorithms have been proposed, particularly for the problem of pre-
diction using expert advice, see [Littlestone and Warmuth, 1994, Vovk, 1990, Cesa-Bianchi et al.,
1997, Freund and Schapire, 1999], one particularly well-known being the multiplicative weights
update algorithm, also known as Hedge. Other settings with limited feedback have been consid-
ered, most notably the multi-armed bandit setting [Auer et al., 2002, Bubeck and Cesa-Bianchi,
2012]. Stronger notions of regret such as internal regret, have also been studied [Foster and Vohra,
1997, Cesa-Bianchi and Lugosi, 2003, Blum and Mansour, 2005, Stoltz and Lugosi, 2005].

In many realistic cases, however (e.g., when decision-making horizons are finite), the minimal
expected regret one can achieve in the worst case over all the sequence of actions chosen by
the adversary (henceforth, just optimal regret) is non-zero. This is also the case when present
losses are more important than future one (modeled as discounted losses), which is a realistic
case on which we focus in our work. In such cases, standard no-regret algorithms can perform
quite poorly compared to the optimum. Indeed, regret minimization with non-uniformly weighted
losses, of which the discounted loss is a special case, has been considered before. While the
average regret goes to zero if the weights satisfy a non-summability condition, lower bounds exist
( [Cesa-Bianchi and Lugosi, 2003], Thm 2.7) that show that the optimal regret is bounded away
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from 0 if the weights are summable, which is the case with discounting. Natural extensions of
no-regret algorithms incur a regret of O(

√
1 − β) in this case (where β, in this section, denotes the

discount factor), for instance see [Cesa-Bianchi and Lugosi, 2003], Thm 2.8 and [Perchet, 2014],
Prop. 2.22. ( [Chernov and Zhdanov, 2010] derive better bounds for the case where future losses
are given a higher weight that current ones.)

In most cases with finite horizon or discounted losses, the exact optimal regret and strategies
are unknown, except for a few special cases. In an early work, [Cover, 1966] gave the optimal
algorithm for the problem of prediction using expert advice over any finite horizon T , for the case
of 2 experts, and where the losses are {0, 1}. [Gravin et al., 2014] recently extended the result to the
case of 3 experts for both the finite horizon and geometrically distributed random horizon prob-
lems.2 [Abernethy et al., 2008] considered a related problem, where a gambler places bets from a
finite budget repeatedly on a fixed menu of events, the outcomes of which are adversarially chosen
from {0, 1} (you win or you lose), and characterized the minmax optimal strategies for the gam-
bler and the adversary. [Luo and Schapire, 2013] considered a similar repeated decision-making
problem where an adversary is restricted to pick loss vectors (i.e., a loss for each action of the
decision-maker in a stage) from a set of basis vectors, and characterized the minmax optimal strat-
egy for the decision-maker under both, a fixed and an unknown horizon. Most of the approaches
in these works are specific to their settings, and exploit the assumptions on the structure of the loss
vectors.3 All of these are examples where games with finite action spaces (called matrix games)
are repeated, which is the setting that we are concerned with. There are also works that consider
exact minmax optimality in repeated games with continuous action spaces, with specific types of
loss functions, see [Koolen et al., 2014, Bartlett et al., 2015, Koolen et al., 2015] and references
therein. In general, however, if the loss vectors are arbitrary, none of these approaches can be ex-
tended and indeed it is recognized that characterizing the optimal regret and algorithm is difficult,
cf. [Luo and Schapire, 2013].

2.3.2 Our contributions

In this context, our main contribution was the proposal of a systematic set-valued dynamic pro-
gramming approach for designing regret-optimal strategies in repeated games with discounted
losses. In these games, the loss criterion is the weighted sum of per-stage losses, with the loss at
stage t ≥ 1 weighted by βt−1, where β ∈ (0, 1) is the discount factor. Such discounting is natural
in practice, where minimizing current losses is more important than the ones in the future. As
mentioned above, in this case, since the losses incurred in the initial stages have a non-vanishing
contribution to the cumulative loss as the number of stages increases, the optimal long-run average
discounted regret for any fixed β ∈ (0, 1) is non-zero (see [Cesa-Bianchi and Lugosi, 2003], Thm
2.7).4 Several known no-regret algorithms guarantee an average regret of O(

√
1 − β) asymptoti-

cally in this setting, but the performance of these algorithms can be far from optimal for a fixed
β. Our approach on the other hand gives a procedure to compute ε-regret-optimal strategies in
these games for any ε > 0. These strategies are extremely simple to implement and require a

2Although a geometric time horizon model seems to be related to the infinite horizon model with discounted losses,
the two problem formulations define regret differently, and thus lead to different optimal regrets.

3Many of these works rely on a particular nice property of these settings, which is that the optimal strategy of the
adversary is a controlled random walk that makes any algorithm incur the same regret. If the losses are simple, for
instance if they are the basis vectors, then this random walk can be exactly analyzed to compute the optimal regret.
Knowing the optimal regret then simplifies the computation of the optimal strategy of the decision-maker.

4By average discounted regret we mean that the weights are normalized by multiplying with (1 − β), which ensures
that the sum of the weights over an infinite horizon is 1.
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finite memory (which grows as ε decreases). For instance, using our approach, we are able to
design a provably near-optimal algorithm for the problem of prediction using expert advice with
discounted losses, for the case of 2 experts. To the best of our knowledge, no such algorithm was
known before.

Our solution begins with a standard approach in regret minimization, of transforming the re-
peated game into a repeated game with vector losses. In this game, the number of vector compo-
nents is the number of actions available to the decision-maker, where each component keeps track
of the additional loss incurred relative to the loss incurred if the corresponding action was always
chosen in the past. The goal of regret minimization in the original game now translates to the
goal of simultaneously minimizing the worst-case expected losses on all the components in this
vector-valued game. In fact there is a tradeoff here: a better guarantee on one component implies
a worse guarantee on some other, and we consider the more ambitious objective of characterizing
the entire Pareto-frontier of the minimal losses that can be simultaneously guaranteed across the
different components. Our main technical contribution is an effective characterization of this set as
the fixed point of a set-valued dynamic programming operator, which simultaneously also charac-
terizes the strategies that achieve the different points on it. This characterization then allows us to
design an iterative scheme to approximate this set and compute approximately optimal strategies
for arbitrarily low approximation error.

In what follows, we describe the main elements of the model, approach and results. All details
can be found in [8].

Model

Let G be a two player game with m actions A = {1, . . . ,m} for player 1, who is assumed to be
the minimizer and who we will call Alice (the decision-maker), and n actions B = {1, . . . , n} for
player 2, who is the adversary and who we will call Bob. For each pair of actions a ∈ A and b ∈ B,
the corresponding loss for Alice is l(a, b) ∈ R. The losses for different pairs of actions are known
to Alice. The game G is played repeatedly for T stages t = 1, 2, · · · ,T . In each stage, both Alice
and Bob simultaneously pick their actions at ∈ A and bt ∈ B and Alice incurs the corresponding
loss l(at, bt). The loss of the repeated game is defined to be the total discounted loss given by∑T

t=1 β
t−1l(at, bt), where β ∈ (0, 1). We define the total discounted regret of Alice as:

T∑
t=1

βt−1l(at, bt) −min
a∈A

T∑
t=1

βt−1l(a, bt), (2.10)

which is the difference between her actual discounted loss, and the loss corresponding to the single
best action that could have been chosen against the sequence of actions chosen by Bob in hindsight.
An adaptive randomized strategy πA for Alice specifies for each stage t, a mapping from the set of
observations till stage t, i.e., Ht = (a1, b1, · · · , at−1, bt−1), to a probability distribution on the action
set A, denoted by ∆(A). Let ΠA be the set of all such policies of Alice.

The adversary Bob is assumed to choose a deterministic oblivious strategy, i.e., his choice is
simply a sequence of actions πB = (b1, b2, b3, · · · , bT ) chosen before the start of the game. Let ΠB

be the set of all such sequences.5 We would like to compute the worst case or minmax expected

5Having an oblivious adversary is a standard assumption in regret-minimization literature [Cesa-Bianchi and Lugosi,
2003] and in fact it is known that in this case, an oblivious adversary is as powerful as a non-oblivious (adaptive)
adversary.
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discounted regret which is defined as:

min
πA∈ΠA

max
πB∈ΠB

(
EπA

[ T∑
t=1

βt−1l(at, bt)
]
−min

a∈A

T∑
t=1

βt−1l(a, bt)
)
, (2.11)

and the strategy for Alice that guarantees this value. Here the expectation is over the randomness in
Alice’s strategy. Here one can see that there is no loss of generality in assuming that the adversary
is deterministic. Indeed if ΠB is allowed to be the set of possible randomizations over T-length
sequences of Bob’s actions, the optimal policy of Bob in the problem

max
πB∈ΠB

EπA,πB

[ T∑
t=1

βt−1l(at, bt) −min
a∈A

T∑
t=1

βt−1l(a, bt)
]

is a deterministic sequence.
We can now equivalently write (2.11) as:

min
πA∈ΠA

max
πB∈ΠB

max
a∈A

EπA

[ T∑
t=1

βt−1(l(at, bt) − l(a, bt))
]
. (2.12)

In order to address this objective, it is convenient to define a vector-valued game G, in which,
for a pair of actions a ∈ A and b ∈ B, the vector of losses is r(a, b) with m components (recall that
|A| = m), where

rk(a, b) = l(a, b) − l(k, b) (2.13)

for k = 1, · · · ,m. rk(a, b) is the single-stage additional loss that Alice bears by choosing action a
instead of action k, when Bob chooses b: the so called single-stage regret with respect to action k.
For a choice of strategies πA ∈ ΠA and πB ∈ ΠB of the two players, the expected loss on component
k in this vector-valued repeated game over horizon T is given by

RT
k (πA, πB) = EπA

[ T∑
t=1

βt−1rk(at, bt)
]
, (2.14)

where the expectation is over the randomness in Alice’s strategy. Now observe that by playing a
fixed policy πA ∈ ΠA, irrespective of the strategy chosen by Bob, Alice guarantees that the total
expected loss on component k is no more than maxπk

B∈ΠB
RT

k (πA, π
k
B). Suppose that we determine

the set of all simultaneous guarantees that correspond to all the strategies πA ∈ ΠA, defined as:

WT ,
{(

max
πk

B∈ΠB

RT
k (πA, π

k
B)

)
k=1,··· ,m

: πA ∈ ΠA

}
. (2.15)

Then it is clear that

min
πA∈ΠA

max
πB∈ΠB

max
a∈A

EπA

[ T∑
t=1

βt−1(l(at, bt) − l(a, bt))
]

= min
x∈WT

max
k

xk.

In fact, we are only interested in finding the minimal points in the setWT , i.e., its Lower Pareto
frontier, which is the defined as the set

Λ(WT ) , {x ∈ WT : ∀ x′ ∈ WT \ {x}, ∃ k s.t. xk < x′k}, (2.16)
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since all other points are strictly sub-optimal. Let this set be denoted asVT . Our goal in this work
is to characterize and compute the set V∞ that can be achieved in the infinite horizon game and
compute policies for Alice in ΠA that guarantee different points in it.

In all of this work, we consider in fact a more general model for a vector-valued repeated
game G with m actions for Alice and n actions for Bob, where m and n are arbitrary but finite, but
we assume that the number of components in the vector of losses r(a, b) is K, where K may be
different from m. Our results will hold for any vector-valued repeated game, not just the one that
arises from the regret minimization formulation discussed before.

Overview of the results

Our goal is to compute the set of minimal guarantees V∞ that Alice can achieve in the infinite
horizon vector-valued discounted repeated game and characterize the policies that achieve it. Our
main results are as follows:

1. We show that the set V∞ of minimal losses that Alice can simultaneously guarantee in an
infinitely repeated vector-valued zero-sum repeated game with discounted losses is the fixed
point of a set-valued dynamic programming operator defined on the space of lower Pareto
frontiers of closed convex sets with an appropriately defined metric. We then show that the
optimal policies that guarantee different points in this set are of the following form. V∞ can
be parametrized so that each point corresponds to a parameter value, which can be thought
of as an “information state". Each state is associated with an immediate optimal randomized
action and a transition rule that depends on the observed action of the adversary. In order to
attain a point inV∞, Alice starts with the corresponding state, plays the associated random-
ized action, transitions into another state depending on Bob’s observed action as dictated by
the rule, plays the randomized action associated with the new state and so on. In particular,
the strategy does not depend on Alice’s past actions and it depends on Bob’s past actions
only through this state that the minimizing player keeps track of.

2. For the case where Alice has only 2 actions, we give a value-iteration based procedure to
approximate V∞ and to compute an approximately optimal policy that only uses a coarse
finite quantization of the parameter space. This strategy can be simply implemented by a
randomized finite-state automaton. Any desired diminishing approximation error can be at-
tained by choosing the appropriate quantization granularity and number of iterations. Our
procedure in principle can be extended to an arbitrary number of actions. We finally il-
lustrate our theory and the approximation procedure on a simple model of prediction with
expert advice with 2 experts.

Overview of the approach. Informally, our approach can be described as follows. Let GT

denote the T - stage repeated game and let G∞ denote the infinitely repeated game. Let V0 =

{(0, 0)}. We can show that one can obtain the setVT+1 from the setVT , by decomposing Alice’s
strategy in GT+1 into a strategy for the 1st stage, and a continuation strategy for the remainder of
the game from stage 2 onwards, as a function of the action chosen by both the players in the 1st
stage. The induction results from the fact that the minimal guarantees that she can guarantee from
stage 2 onwards are exactly the setVT . Suppose that at the start of GT+1, Alice fixes the following
plan for the entire game: she will play a mixed strategy α ∈ ∆(A) in stage 1. Then depending on
her realized action a and Bob’s action b, from stage 2 onwards she will play a continuation strategy
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that achieves the guarantee R(a, b) ∈ VT (she will choose one such point R(a, b) for every a ∈ A
and b ∈ B). Note that it is strictly sub-optimal for Alice to choose any points outside VT from
stage 2 onwards. Now this plan for the entire game GT+1 gives Alice the following expected
simultaneous guarantees on the two components:(

max
b∈B

{∑
a∈A

αa
[
r1(a, b) + βR1(a, b)

]}
,max

b∈B

{∑
a∈A

αa
[
r2(a, b) + βR2(a, b)

]})
.

By varying the choice of α and the map R(a, b) we can obtain the set of all the simultaneous
guarantees that Alice can achieve in the (T + 1)-stage game. The Lower Pareto frontier of this set
is exactlyVT+1. Thus there is an operator Φ, such that

VT+1 = Φ(VT )

for any T ≥ 0, where V0 is defined to be the singleton set {(0, 0)}. We show that this operator is
a contraction in the space of Lower Pareto frontiers of closed convex sets, with an appropriately
defined metric. This space is shown to be complete, and thus the sequence VT converges in the
metric d to a set V∗, which is the unique fixed point of this operator Φ. As one would guess,
this V∗ is indeed the set V∞ of minimal simultaneous guarantees that Alice can achieve in the
infinitely repeated game G∞.

Note that an important step in our approach is a reduction of the problem to a vector-valued
repeated game. The study of vector-valued repeated games was pioneered by Blackwell [Black-
well, 1956a]. He gave sufficient conditions for a set to be approachable by a player, which means
that there exists a strategy for a player that ensures that the average loss approaches this set regard-
less of the adversary’s actions. Moreover, he explicitly defined an adaptive randomized strategy
that ensures this. Later he also showed that this theory can be used to obtain no-regret strategies
as formulated by Hannan [Hannan, 1957], using the transformation of the repeated game into a
vector-valued game that we described earlier [Blackwell, 1956b]. This theory was subsequently
extended in various ways [Vieille, 1992,Lehrer, 2003], and stronger connections with regret mini-
mization and other learning problems like calibration were shown [Abernethy et al., 2011,Perchet,
2014]. But as far as we know, there has been no prior work on the discounted loss criterion. In
this work, as a by-product of our analysis, we successfully bridge this important gap in the the-
ory of vector-valued repeated games. As a result, this theory bridges significant gaps in other
decision-making problems where Blackwell’s approachability theory has found applications.6

Summary of our contribution to online decision making with adversarial losses:
We propose a systematic set-valued dynamic programming approach for designing regret-
optimal strategies in repeated games with discounted losses.

6A notable example is the analysis of zero-sum repeated games with incomplete information [Zamir, 1992,Aumann
and Maschler, 1995, Sorin, 2002]
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Chapter 3

Game theory and statistical learning for
privacy

This chapter covers the work in papers [7], [25, 27, 29, 31]. This work was done in collabora-
tion with Oana Goga and Krishna Gummadi (Max-Planck Institute for Software Systems), Jens
Grossklags (PennState University), Stratis Ioannidis (Northeastern University, formerly Tech-
nicolor and Yahoo! labs), Robin Sommer (ICSI Berkeley), Renata Teixeira (Inria, formerly
CNRS); and with the following students: Athanasios Andreou (PhD student at EURECOM un-
der my supervision), Michela Chessa (postdoc at EURECOM under my supervision). The ideas
developed here also led to the PhD of Amine Lahouel started in Sept. 2016 under my supervision
and in collaboration with Cédric Hébert (SAP labs).

This chapter summarizes my work relating to game theory and statistical learning for online
privacy. Throughout this work, my general focus was on investigating algorithms to learn from
personal data and how they affect privacy. I first focus on the problem (from the service provider’s
side) of learning from personal data directly revealed by privacy-conscious users. Since such users
tend to strategically obfuscate the data they reveal, this naturally leads to game-theoretic analysis.
In a second time, I focus on learning from data that is publicly available, as a tool to evaluate the
privacy risk of users given the data that they already revealed.

3.1 Learning from personal data provided by privacy-conscious users

Online services collect personal data of users and exploit it using learning algorithms for various
purposes such as to infer what users like in order to provide personalized services (recommenda-
tion, targeted advertisement, etc.). This raises the question of what is the best algorithm to learn
from personal data.

3.1.1 Context

Machine learning is an active field of research and many efficient algorithms have been developed
in the last decades for applications such as computer vision or medicine, in particular for regression
and classification problems [Hastie et al., 2009]. In essence, such algorithms automatically learn
from data (called training data) and generalize to new examples (called testing data) in order to
make predictions. Recommendation algorithms based on personal data were also well studied in
the last decade [Ricci et al., 2011], using different techniques but with the same philosophy as for
other learning problems that consists in assuming that data is generated independently from the
learning algorithm.

23
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Personal data of human being is different from other types of data such as nature’s pictures
because its revelation raises privacy issues. This led to a large interest in the question of how to
protect the privacy of users providing data while being able to learn from the data. A solution was
proposed in the computer science community, called ‘differential privacy’ [Dwork, 2006, Dwork
and Roth, 2014, Kifer et al., 2012], that consists in adding noise to the output of an algorithm so
that it is not possible to determine whether the data of a given user participated in the compu-
tation. Since its introduction in 2006, this solution received almost exclusive attention from the
privacy and computer science community. It usually requires, however, that users can give their
raw data to a trusted third party who computes the algorithm’s output and adds noise to it. If this
is not possible, then users can directly add noise to their data before revealing it. This solution,
although originating from the older idea of randomized response [Warner, 1965], recently gained
interest in the formal framework of ‘local differential privacy’ [Duchi et al., 2013, Kairouz et al.,
2016]. Broadly, the literature on differential privacy and local differential privacy seeks obfusca-
tion mechanisms to guarantee a given level of privacy, characterization of the accuracy of statisti-
cal estimation under privacy constraints, and mechanisms to optimize this privacy-utility tradeoff

where utility is defined based on the accuracy of a model learned from the data (see e.g., [Dwork
and Roth, 2014, Chapter 11] and [Kairouz et al., 2016] and references therein). Perturbing a
dataset before submitting it as input to a data mining algorithm also has a long history in privacy-
preserving data-mining (see, e.g., [Vaidya et al., 2006, Domingo-Ferrer, 2008]). In the early days
of data sharing, researchers were interested in how companies or governments can perturb their
data before sharing it with third parties to hide sensitive information independently of the algo-
rithm [Traub et al., 1984, Duncan and Mukherjee, 2000]. For more accurate results, perturbations
tailored to specific data mining tasks have then been proposed in the context of reconstructing the
original distribution of the underlying data or building decision trees [Agrawal and Srikant, 2000],
clustering [Oliveira and Zaiane, 2003], and association rule mining [Atallah et al., 1999].

The aforementioned papers consider only the relation between privacy and utility (under var-
ious definitions) for given obfuscation mechanisms. In reality, in many applications (including
online services), personal data is revealed directly by the individuals who can then choose the
obfuscation level (or how much data to reveal, or whether to reveal data at all) according to their
privacy sensitivity. That introduces questions related to incentives to reveal data, which also gener-
ated a significant literature. Researches in behavioral economics [Huberman et al., 2005, Acquisti
and Grossklags, 2012] attempted to quantify experimentally the private cost incurred by an agent
when releasing personal data. The game-theoretic analysis of incentives in personal data was pi-
oneered by [Kleinberg et al., 2001], who proposed fair compensation mechanisms for personal
data based on cooperative game theory in a simplistic model. Recently, a significant thread of
research started on designing mechanisms to buy data from potentially untruthful agents for var-
ious objectives [Ghosh and Roth, 2011, Dandekar et al., 2012, Ligett and Roth, 2012, Roth and
Schoenebeck, 2012,Dwork and Roth, 2014,Cummings et al., 2015]. In all those works, the loss of
privacy by releasing data is quantified using variants of differential privacy. [Riederer et al., 2011]
also propose a mechanism called transactional privacy where users can sell access to their data
through an unlimited supply auction. Finally, other models also considered the case where agents
may choose their effort in providing data [Cai et al., 2015,Luo et al., 2015] or have heterogeneous
costs of providing data [Abernethy et al., 2015]. In all these works, users are assumed to maximize
the payment received (minus cost of effort). The data elicitation literature also considered related
problems where one tries to incentivize an expert to truthfully reveal his prediction of an event,
typically using scoring rules [Gneiting and Raftery, 2007,Chambers and Lambert, 2014,Frongillo
et al., 2015] (see also the literature on incentives in crowdsourcing [Dasgupta and Ghosh, 2013]).
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All the literature mentioned above about incentives and privacy considers agents who are max-
imizing only the payment received but are insensitive to the quality of the learning result; and looks
at how to optimize the payments while the learning algorithm is fixed. In reality, individuals do
choose to reveal data without being paid in many online services, simply because they have an
interest in the result of the learning algorithm and therefore in helping to make it accurate (this
is also the case in many data analytics projects of societal importance). Personal data is there-
fore a special kind of data provided by agents whose objectives depend on the learning algorithm
itself. That brings a completely orthogonal question of how to change the learning algorithm
to increase the accuracy without involving payments. Barely any study considered that question
to date. The (relatively small) literature on strategy-proof learning considered cases where each
agent is interested in maximizing the learning accuracy around his own data points [Perote and
Perote-Pena, 2004, Dekel et al., 2008, Nix and Kantarciouglu, 2012, Meir et al., 2012], but it does
not include privacy considerations or effort that users provide to give data. [Chorppath and Alpcan,
2013, Caragiannis et al., 2016] consider effort and privacy questions but in simple cases without
learning task (averaging).

3.1.2 Our contributions

In this context, our first and main contribution was the proposition in [31] of the first model of
privacy-conscious users that takes into account the interest of users in the learning outcome by
modeling the precision of the information learned as a public good with externalities (i.e., the
information revealed by an agent benefits other agents). Here, we summarize the model as well as
our main results in the original setting [31] and in a simplified setting [27, 29].

Model

Our model is based on the following basic setting. A set N = {1, · · · , n} of users each have a public
variable xi ∈ R

d, d ≥ 1 (a set of features that are publicly available such as age), and a private
variable yi ∈ R (known only by user i, e.g., concentration of a substance in blood). We assume
that the public and private variables are linked by a linear model:

yi = βTxi + εi, (i ∈ N),

where β ∈ Rd is the parameter of the linear model and εi ∈ R is an i.i.d. random variable of zero
mean and of finite variance σ2. Users do not reveal their private variable yi, but rather a noisy
version of it: ỹi = yi + ε̃i, where ε̃i is an i.i.d. random variable of zero mean, independent of εi. We
assume that, by his choice of the variance of ε̃i, user i chooses the precision (i.e., inverse variance)
λi of ỹi in an interval [0, 1/σ2]. An analyst collects the variables xi and ỹi and uses them to obtain
an estimate of β through generalized least-square regression (GLS):

β̂GLS = arg min
β∈Rd

∑
i∈N

λi(ỹi − β
Txi)2

 = (XT ΛX)−1XT Λ ỹ, (3.1)

where ỹ = [ỹi]i∈N is the n-dimensional vector of perturbed variables, X = [xT
i ]i∈N ∈ R

n×d the n×d
matrix whose rows comprise the transposed feature vectors, λ = [λi]i∈N , and Λ = diag(λ). GLS is
known to give the smallest covariance, in the positive semi-definite sense, amongst linear unbiased
estimators [Aitken, 1935]. Then, the precision of the linear model estimated is characterized by
the covariance V(λ) = (XT ΛX)−1 of β̂GLS. Finally, we assume that each user minimizes a cost

Ji(λi, λ−i) = F(V(λ)) + ci(λi),
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where F is a convex and increasing function (e.g., the trace function) that describes the estimation
cost, i.e., the cost incurred by a user due to imprecision of the analyst’s estimate (the public
good part); and ci is a convex and increasing function that describe the individual’s privacy cost.
Specifically, we will use the following assumptions:

Assumption 1. The privacy costs ci : R+ → R+, i ∈ N, are twice continuously differentiable,
non-negative, non-decreasing and strictly convex.

Assumption 2. The scalarization F : S d
++ → R+ is twice continuously differentiable, non-

negative, non-constant, non-decreasing in the positive semidefinite order, and convex.

We denote by Γ the complete information game defined above.

Results

For the model above, we first analyze the Nash equilibria. We show that the game is potential and,
using the potential game structure of Γ, we derive the following result.

Theorem 3.1.1. There exists a unique non-trivial equilibrium of the game Γ.

Here, a non-trivial equilibrium is an equilibrium where each agent has a finite cost. Having
a unique non-trivial equilibrium is an interesting property both for theoretical derivations and for
applications. In [31], we also show the same result for variants of the game Γ where the analyst
does not use GLS estimator but rather a generic linear estimator.

Then, we move to studying the efficiency of the Nash equilibrium, captured by the price of
stability defined as

PoS =
minλ∈NE

(
nF(V(λ)) +

∑
i∈N ci(λi)

)
minλ∈[0,1/σ2]n

(
nF(V(λ)) +

∑
i∈N ci(λi)

) ,
where NE ⊂ [0, 1/σ2]n is the set of Nash equilibria. Note that the price of stability is equal here
to the price of anarchy that we would obtain after eliminating the trivial equilibria. Then we can
show the following bounds.

Theorem 3.1.2. Under Assumptions 1 and 2, PoS ≤ n.

The bound of Theorem 3.1.2 works for every privacy cost satisfying Assumption 1, but it is
quite crude. By restricting the privacy costs, we can obtain better results. We begin by providing
a bound on the price of stability when privacy costs are monomial functions:

Theorem 3.1.3. Assume that the cost functions are given by ci(λ) = ciλ
k, where ci > 0 and k ≥ 1.

If the estimation cost is given by F1(V) = trace(V), then PoS ≤ n
1

k+1 . If the estimation cost is given
by F2(V) = ‖V‖2F , then PoS ≤ n

2
k+2 .

The proof of Theorem 3.1.3 relies on characterizing explicitly the socially optimal profile
under relaxed constraints, and showing it equals the Nash equilibrium λ∗ multiplied by a scalar.
Moreover, the theorem states that, among monomial privacy costs, the largest PoS is n

1
2 for F = F1,

and n
2
3 for F = F2. Both are attained at linear privacy costs; in fact, the above “worst-case” bounds

can be generalized to a class of functions beyond monomials.
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Theorem 3.1.4. Assume that for every i ∈ N the privacy cost functions ci : R+ → R+ satisfy
Assumption 1. If the estimation cost is the extended-value extension of F1(V) = trace(V), and the
derivatives c′i satisfy

nc′i(λ) ≤ c′i(n
1
2λ) (3.2)

then PoS ≤ n
1
2 . Similarly, if the estimation cost is the extended-value extension of F2(V) = ‖V‖2F ,

and the derivatives c′i satisfy

nc′i(λ) ≤ c′i(n
1
3λ) (3.3)

then PoS ≤ n
2
3 .

Theorem 3.1.4 applies to privacy cost functions that have the “strong” convexity properties
(3.2) and (3.3). Roughly speaking, such functions grow no slower than cubic and fourth-power
monomials, respectively. In contrast to Theorem 3.1.3, in the case of Theorem 3.1.4, we cannot
characterize the social optimum precisely; as a result, the proof relies on Brouwer’s fixed point
theorem to relate λopt to the non-trivial Nash equilibrium λ∗.

All the efficiency bounds above apply to the case where the analyst uses the GLS estimator.
However, for general privacy costs and even for F = trace, GLS is not guaranteed to give a mini-
mum estimation cost at Nash equilibrium. To continue our analysis of the equilibrium estimation
cost and how to improve it, we restrict in [27,29] to a simpler setting where the analyst simply tries
to compute the average of the private variables. That is, d = 0 (there is no public variable), and
the analyst computes the generalized least square estimator which is simply the weighted average

ŷM(λ) =

∑
i∈N λiỹi∑
i∈N λi

. (3.4)

The covariance is then simply the variance

σ2
M(λ) =

1∑
i∈N λi

∈ [σ2/n,+∞]. (3.5)

We also first assume that the population is homogeneous, that is that each agent has the same
privacy cost. In that case, we establish two types of results:

Monotonicity and convergence: We show that, as the number n of agents increases, the equilibrium
precision of each agent decreases and converges to zero (i.e., each agent gives less and less precise
data hence having more and more privacy); but the equilibrium estimation variance σ2

M decreases
and converges to zero (i.e., the aggregate learning precision increases).

Improvement of the equilibrium variance: We show that it is possible to improve the equilibrium
variance simply by setting a minimum precision η. That is, each agent can either give no data at
all, or give data with precision in [η, 1/σ2]. We show that this strictly decreases the equilibrium
variance for a well chosen value of η.

Finally, we show that those results can be extended to the case of an heterogeneous population.
This provides a simple way, by restricting the action space of the players, to improve the quality
of the model learned at equilibrium.

Summary of our contribution to learning from personal data disclosed by privacy-
conscious users:
We propose the first model that takes into account the public good nature of the learning out-
come, in the context of linear regression. We provide efficiency results for the general model
and, for a simplified version, we provide a simple way to increase the learning precision.
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3.2 Learning and estimation of the privacy risks from public data

Individuals publicly share large amounts of data about themselves on social computing systems
such as Facebook, Twitter, LinkedIn, Reddit, IMDB, or Yelp. Although they receive great utility
from those systems, users are also concerned that such data sharing negatively affects their privacy;
but estimating the privacy risk from public data sharing is a hard challenge as it depends on how
much one can learn from the available data.

3.2.1 Context

In the past decade, a large body of research has provided and evaluated methods that show that
(hidden) sensitive information about a user such as ethnicity or political affiliation can be in-
ferred by mining publicly available data within a single social computing system [Backstrom et al.,
2010,Zheleva and Getoor, 2009,Mislove et al., 2010,Chang et al., 2010]. This type of information
disclosure is called attribute disclosure: it consists in inferring the value of an attribute (e.g., eth-
nicity) that was hidden (i.e., not directly shared by the user). All these studies use either friendship
or user behavior data (or both) and exploit the homophily property to make the inference (i.e., the
fact that it is possible based on friendship or user behavior data to construct groups of users sharing
similar attributes).

In parallel, many works appeared in recent years on matching identities across multiple social
computing systems [Motoyama and Varghese, 2009, Perito et al., 2011, Malhotra et al., 2012,
Paridhi Jain and Joshi, 2013, Acquisti et al., 2011, You et al., 2011, Vosecky et al., 2009, Raad
et al., 2010, Northern and Nelson, 2011, Peled et al., 2013, Liu et al., 2013, Zafarani and Liu,
2013, Zafarani and Liu, 2009, Labitzke et al., 2011], that is on building algorithms to find, for a
given identity in a social computing system, the identity in a second social computing system that
belongs to the same individual (termed the matching identity). This type of information disclosure
is called identity disclosure. The proposed matching algorithms typically use publicly available
attributes (such as name and bio) and leverage the fact a individuals share attributes across social
computing systems that might be unique enough to identify them.

However, in this space, we identify two missing stones:

- Existing matching schemes were only tested on very small datasets and we have no estimation of
their reliability at a reasonable scale corresponding to real-world social computing systems. Here,
reliability refers to the extent to which different profiles belonging to the same user can be matched
across social networks, while avoiding mistakenly matching profiles belonging to different users.
Matching schemes need to be highly reliable because incorrectly matched profiles communicate an
inaccurate portrait of a user and could have seriously negative consequences for the user in many
application scenarios. For example, Spokeo1 has been recently sued over providing inaccurate
information about a person which caused “actual harm” to the person employment prospects2.
This raises many questions such as how to evaluate the reliability of a matching scheme at scale?
how to build more reliable matching schemes? what is the reliability that can be achieved in
real-world social computing systems?

- Surprisingly, few studies have systematically considered the fact that, in addition to identity dis-
closure risks, considering multiple social computing systems also introduces significant new at-
tribute disclosure risks due to the possibility of inferring a hidden attribute in a profile by looking at

1http://www.spokeo.com/
2http://www.ftc.gov/sites/default/files/documents/cases/2012/06/120612spokeocmpt.pdf

http://www.spokeo.com/
http://www.ftc.gov/sites/default/files/documents/cases/2012/06/120612spokeocmpt.pdf
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another social computing system (either through homophily or by finding the matching identity).
Such attribute disclosure is powerful because individuals reveal different pieces of information on
different social computing systems [Chen et al., 2012] (e.g., personal life on Facebook, profession
on LinkedIn, interests on Twitter).

Even more importantly, to the best of our knowledge, no study has jointly analyzed identity
and attribute disclosure risks. Doing this joint analysis is particularly important because the re-
search community recently gained interest in building defenses against privacy attacks (such as
privacy advisors). Defenses were proposed separately in the context of attribute disclosure [Biega
et al., 2016] (warning users when their behavior put them at risk of attribute disclosure, e.g., “lik-
ing this will reveal that about you”), and in the context of identity disclosure (advising users to
blend into the crowd, that is to share information at a granularity that makes them less uniquely
identifiable [Backes et al., 2016]). However, it is not clear that, in the context of multiple social
computing systems where both risks are present, one type of defense also helps against the other
type of risk. Intuitively indeed, while blending into the crowd might help against identity dis-
closure, it might also offer more opportunities to learn attributes and hence increase the attribute
disclosure risk. This raises the key questions: what is the link between the two disclosure risks?
does a lower identity disclosure risk always correspond to a lower attribute disclosure risk? do
defenses against identity disclosure risk also reduce the attribute disclosure risk?

3.2.2 Our contributions

Our work tackles both sets of questions mentioned above. We start by describing our results
on matching; all details of which are in [25]. Our first contribution lies in the definition of a
framework consisting in a set of four properties for profile attributes–Availability, Consistency,
non-Impersonability, and Discriminability (ACID)–that determine the reliability of a matching
scheme and help us understand what the reliability of a matching scheme depends on.

To present the ACID framework, we first introduce a few notation. We consider that two
profiles in two social computing systems match if they belong to/are managed by the same user.
The profile matching problem is then: given a profile a1 in one social computing system S N1, find
all its matching profiles in another large social network S N2, if at least one exists. We will denote
by a2 generic profiles in S N2 and by â2 matching profiles of a1. For conciseness, we will also write
a2-match-a1 if a2 is a matching profile of a1 and a2-non-match-a1 otherwise. We investigate the
extent to which we can match profiles by exploiting the attributes users publicly provide in their
profiles such as their real names, screen names, location, profile photos, and friends. For profile
a1 (resp. a2), we denote by v1 (resp. v2) the value of a considered attribute. From attribute values,
we define a feature as the similarity between the values of profiles in S N1 and S N2: s(v1, v2).

For a given attribute, we propose the following four properties to help capture its quality to
match profiles reliably:
Availability: At first, to enable finding the matching profile, an attribute should have its value
available in both social computing systems. To formalize this notion, we model the attribute
values of a1 and each a2 ∈ S N2 as random variables and we define the availability of an attribute
as:

A = Pr
(
v1 and v2 available

∣∣∣a2-match-a1
)
.

Consistency: It is crucial that the selected attribute is consistent across matching profiles, i.e.,
users provide the same or similar attribute values across the different profiles they manage. For-
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mally, we define the consistency of an attribute as:

C = Pr
(
s(v1, v2) > th

∣∣∣a2-match-a1, v1 and v2 available
)
,

where th is a threshold parameter.
non-Impersonability: If an attribute can be easily impersonated, i.e., faked, then attackers can
compromise the reliability of the matching by creating fake profiles that appear to be matching
with the victim’s profiles on other sites. Some public attributes like “name” and “profile photo”
are easier to copy than others such as “friends”. To formalize this notion, we introduce the notation
a2-impersonate-a1 to denote that profile a2 has been created by an attacker impersonating profile
a1. We denote the probability that there exists at least one profile a2 impersonating a1 by pI =

Pr(a1 is impersonated) and the probability that there is no profile impersonating a1 by pnI = 1−pI .
The difficulty to manipulate an attribute is characterized by its non-Impersonability defined as:

nI = Pr
(

max
a2:a2-impersonate-a1

s(v1, v2) < th
)
.

Discriminability: Even without impersonations, in order to enable finding the matching profile,
an attribute needs to uniquely identify a profile in S N2. A highly discriminating attribute would
have a unique and different value for each profile, while a less discriminating attribute would have
similar values for many profiles. For example, “name” is likely to be more discriminating than
“gender”. Formally, we define the discriminability of an attribute as:

D = Pr
(

max
a2:a2-non-match-a1

s(v1, v2) < th
∣∣∣a1 not impersonated

)
.

In practice, it is impossible to estimate D unless we are able to identify impersonating profiles.
Instead, we estimate:

D̃ = Pr
(

max
a2:a2-non-match-a1

s(v1, v2) < th
)
.

D̃ represents the “effective discriminability” taking into account possible impersonations. Since
impersonators create non-matching profiles as similar as possible to the original profile, it is rea-
sonable to assume that D̃ ≤ D. Moreover, by application of Bayes formula, we can show that
D ≤ D̃/pnI so that, if pI is not too large, D̃ gives a good estimate of D. If we assume that the
impersonating profiles are independent from the other non-matching profiles, we can also prove
that D̃ = D · (pnI + nI · pI). This clearly shows that D̃ is close to D if either the attribute is hard to
impersonate (nI close to one) or the proportion of impersonator is small (pI small).

The ACID properties are clear and intuitive properties that help understand the potential of an
attribute to perform reliable matching, as the following theorem formalizes. The performance of
the matching scheme is measured by the standard precision and recall quantities where precision
is defined as the fraction of all pairs returned by the matching scheme which are true matches and
recall as the fraction of matching profiles that are identified, that is:

precision = Pr
(
a2-match-a1|s(v1, v2) > th

)
and recall = Pr

(
s(v1, v2) > th|a2-match-a1

)
.

Theorem 3.2.1. Consider a classifier based on a given attribute that classifies as matching profiles
if s(v1, v2) > th. The performance of the classifier is characterized by the following results.

(i) We have
recall = C · A.
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(ii) Assume that, for each profile a1 ∈ S N1, there is at most one matching profile in S N2. Then,

precision ≤
recall

recall + 1 − D̃
.

(iii) Assume that pI > 0. Then, precision = recall = 1 iif A = C = nI = D = 1.

In Theorem 3.2.1, the threshold parameter th must be the same as the one in the definitions of
C, nI and D. Theorem 3.2.1-(i) shows that the classifier’s recall is simply the product of consis-
tency and availability. Theorem 3.2.1-(ii) gives a simple upper bound of the precision as a function
of the effective discriminability (which itself is a function of the discriminability and of the im-
personability, see above). This upper bound gives a good order of magnitude for the precision;
moreover, for high precision (which is what we aim), given the small number of false positives,
the true precision should be close to the bound. Finally, Theorem 3.2.1-(iii) confirms that a high
value of all four ACID properties is necessary and sufficient to obtain high precision and recall.

Properties A, C and nI are independent of the network scale, but the discriminability very
largely depends on the network scale since having more non-matching pairs decreases the prob-
ability that none of them has a high similarity score. This implies that we must estimate the
precision and the recall of a matching scheme using datasets that accurately capture the ACID
properties of profile attributes of the entire social network; otherwise the precision and the recall
will be incorrect. This is typically what is done wrong by previous works which evaluate their
schemes on random datasets, that is datasets that contain a random subset of profiles from S N1
and their matching profiles from S N2. The discriminability for such datasets is very high and the
performance appears good as shown in Figure 3.1a.

We proposed a way of emulating a very large-scale dataset, which preserves the discriminabil-
ity. As shown in Figure 3.1b, the actual performance is then much lower than estimated on a
random dataset. Further, we proposed optimization methods for the training that increase the per-
formance (Figure 3.1c), as well as a new scheme that performs even better based on the assumption
that each profile has at most one matching account (Figure 3.1c). At best, we obtain 30% recall
for a 95% precision (whereas the erroneous evaluation of previous work predicted 90% recall).
Finally, we perform tests using human workers and observe that even them only achieve a 40%
recall for a 95% precision.

In our follow-up work [7] (not published yet), we tackled the question of the relationship
between attribute and identity disclosure. First, while working on quantifying identity disclosure
risks we realized that its definition is not completely straightforward; hence we proposed a new
definition. Then, we showed that there is a trade-off between attribute and identity disclosure in
some regime, that is, profiles with a lower identity disclosure risk (because they blend into the
crowd) have a higher attribute disclosure risk (because there are more similar profiles to learn
from).

Summary of our contribution to learning for privacy risk estimation:
We propose a framework (ACID) to understand and evaluate matching schemes at very large
scale. We propose optimized matching schemes for very large scale and study the limits in
current social computing systems. We also analyze the relationship between identity and attribute
disclosure risks.



32 CHAPTER 3. GAME THEORY AND STATISTICAL LEARNING FOR PRIVACY

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

 

 

LINKER NB

LINKER SVM

LINKER LR

LINKER DT

(a) Random sample dataset
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(b) Emulated large-scale dataset
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(c) Emulated large-scale dataset: optimized
classifiers
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(d) Emulated large-scale dataset: special case

Figure 3.1: Precision and recall tradeoff for matching Twitter to Facebook profiles using different
classifiers when evaluated over a random dataset and an emulated large-scale dataset. "Linker"
refers to the simple binary classifier that classifies a pair as a match if its similarity score is larger
than a threshold, using a standard classification method: Naive Bayes (NB), Support Vector Ma-
chine (SVM), Logistic Regression (LR) or Decision Tree (DT). The symbol "+" identifies the
optimized training. "Topmatch" and "Guard" correspond to classifiers that optimize the perfor-
mance by using the assumption that a profile in S N1 can have only one matching in S N2–see
details in [25].



Chapter 4

Game theory and statistical learning for
network systems

This chapter covers the work in papers [11], [13–15], [23, 24, 26, 34, 36], [40, 41]. This work
was done in collaboration with Saurabh Amin (MIT, formerly UC Berkeley), Ernst Biersack
(EURECOM), John Musacchio (UC Santa Cruz), Giovanni Neglia (Inria), Shankar Sastry (UC
Berkeley), Galina Schwartz (UC Berkeley); and with the following students: Alberto Benegiamo
(research assistant under co-supervision of Giovanni Neglia and myself), Hadrien Hours (PhD
student at EURECOM under co-supervision of Ernst Biersack and myself), Xiaohu Wu (PhD
student at EURECOM under my supervision).

This final chapter summarizes my work related to game theory and statistical learning for
network systems construed broadly. Throughout this work, my main focus was on evaluating and
improving the infrastructure on which user-centric services rely. I first focus on the question of
analyzing and predicting network performance, for which the statistical learning tools of causal
analysis is the most natural. Then I study the problem of reducing network congestion by using
incentives, in the contexts of communication networks and of energy networks. Analyzing the
effect of incentives and deriving optimal incentives is naturally done using game theory to model
the response of agents to incentives. I finally focus on allocation of resources in a cloud.

4.1 Practical causal analysis for network performance prediction

4.1.1 Context

Communication networks are complex systems whose operation relies on a large number of com-
ponents that work together to provide services to end users. As the quality of these services
depends on different parameters, understanding how each of them impacts the final performance
of a service is a challenging but important problem. However, intervening on individual factors to
evaluate the impact of the different parameters is often impractical due to the high cost of inter-
vention in a network. Previously proposed approaches to study network performance fall short of
allowing one to understand the role of the different parameters and to predict how a change in any
of these parameters will impact performance. It is therefore desirable to adopt a formal approach
that allows this.

The approach of causality pioneered by J. Pearl [Pearl, 2009] provides a powerful framework
to investigate these questions, in particular using graphical causal models represented by Bayesian
networks that give simple graphical criteria to infer the mathematical equations to predict the effect
of interventions [Pearl, 2009,Spirtes et al., 2001]. Such an approach represents the set of parame-
ters as a graph whose directed links mean a causal effect and it offers a concise visual presentation

33
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of the different causal dependences, which greatly simplifies the understanding and manipulation
of complex systems. It also allows performing prediction of the change of performance when
intervening on one of the parameters.

In this work, we use a constraint-based method named PC algorithm [Spirtes and Glymour,
1991] to infer the causal graph, which mostly rely on testing all possible conditional indepen-
dences. The choice of the independence test is then essential for inferring the correct graph. Many
implementations of the PC algorithm use the Z-Fisher test, which assumes linearity and normality
of the data. We observed, however, that data from communication networks are neither linear
nor normal. To better take into account the nature of our data, we can use the Kernel Condi-
tional Independence test (KCI) from [Zhang et al., 2012], which defines covariance operators in
the Reproducing Kernel Hilbert Spaces (RKHS) corresponding to the parameters being tested and
derives a statistic which distribution can be estimated under the hypothesis of independence. This
independence test is very similar to the Hilbert Schmidt Independence Criterion (HSIC) [Gretton
et al., 2007], the statistics of the two tests being exactly the same in the unconditional case. The
use of kernel based independence test was proposed to handle the cases where no formal func-
tional dependence or distribution can be assumed from the data. However, its implementation
has two problems: First, the computation time to perform independence tests with this criterion is
much longer than for the Z-Fisher test; in particular to test the conditional independences. Second,
the implementation of the KCI test uses matrix operations (Cholesky factorization) that, although
theoretically well justified, may fail due to numerical issues. In this case, the test will not return
an answer.

4.1.2 Our contributions

In this context, our first contribution was to propose a bootstrap procedure to be able to apply the
KCI test in practice. Indeed, both problems mentioned above can be avoided by using datasets
of smaller size (or sub-datasets), but at the expense of a possible loss of accuracy. To solve these
two problems, we modified the independence test by including a bootstrap method [Davison and
Hinkley, 1997], which works as follows. For each independence test of X y Y | Z (X independent
of Y conditionally on Z), we re-sample the dataset (with replacement) and create l new sub-datasets
of N samples. The test is performed on each re-sampled sub-dataset (by comparing the p-value to
an objective level of significance of the test, often denoted as α) and we accept the independence if
a percentage of at least δ of sub-tests detects that the variables are independent. In [14], we show
that this testing procedure KCI+bootstrap does not decrease the accuracy compared to the KCI
test on the full dataset as long as N is large enough. On the other side, it offers a number of very
valuable advantages. First, it reduces the computation time and offers an easy and efficient way
to parallelize the computation on different machines. Second, it reduces the numerical issues due
to Cholesky factorization and therefore allows to obtain a more accurate result in cases where the
KCI test on the full dataset would simply fail. Also the bootstrap method offers a way to estimate
the confidence in the result of the independence tests. We also show in [14] how to select the
different parameters of the new KCI+bootstrap test.

Armed with the KCI+bootstrap test, we are then able to infer a causal graph from real-world
datasets (about 20 features and 5000 data points) in a reasonable time. We then proposed a flexible
method based on using causal rules and using copulae for estimation of the parameters distribution
and dependence to do the prediction to do the prediction. Finally, we applied these two methods
for the study of two network performance applications: TCP [14] and DNS [13].

In our study of TCP [14], we started with controlled experiments generated using the emulator
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Mininet [Lantz et al., 2010]. This allowed us to validate the prediction done using our causal graph.
Specifically, we generated transfers using the topology in Figure 4.1 and obtained the causal graph
shown in Figure 4.2, where the parameters are explained in Table 4.1. We observe that this causal
graph is in line with our domain knowledge and shows interesting new dependences that were not
captured by previous models—see a complete discussion in [14]. Yet, to validate our inference
method, we use predictions. Specifically, we perform a prediction of the effect of an intervention
on the parameter retransmission score (representing some losses) on the throughput, using the
causal graph just inferred together with our prediction method based on copulae. Then, we use the
Mininet emulator to actually perform the intervention and measure the resulting throughput. The
results are shown in Figure 4.3 and give us confidence in the accuracy of our methodology.

Figure 4.1: Emulated network using Mininet

Table 4.1: Summary of Mininet network emulation experiments dataset

Parameter Definition Min Max Avg CoV
bw minimum bandwidth (MBps) 1 25 7.1 0.91

delay propagation delay (ms) 30 180 86 0.48
queue1 size of R1 buffer (pkts) 10 400 98 1.10
queue2 size of R2 buffer (pkts) 10 400 100 0.99

nlac Narrow Link Available Capacity (kBps) 12 3070 630 5.00
rwin Receiver window advertised by C1 (kB) 74 2155 288 0.65

bufferingdelay part of the RTT due to queuing delay (ms) 1 6760 120 2.40
rtt Round Trip Time (ms) 84 6910 310 0.99

timeouts number of timeouts (units) 0 682 79 1.50
retrscore fraction of retransmitted packets (no unit) 0 0.61 0.04 5.10

p fraction of loss events (no unit) 0 0.64 0.04 8.40
nbbytes number of bytes sent by the server (MB) 6 150 110 0.21

tput throughput (kBps) 6 1100 280 0.81

To conclude our study on TCP, we collected a dataset of real TCP transfers from which we
inferred the causal graph. Then, using this causal graph, we were able to perform predictions of
the effect of interventions on parameters such as the RTT and loss rate. We also showed that these
prediction based on causal methods differ from naive predictions based on model fitting where, to
predict the effect of setting the RTT to a given value, one would simply condition on this value in
the initial dataset. This shows that using causal method is a powerful tool for communication net-
works leading to more realistic predictions that could be useful for planning costly interventions.
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Throughout our study of TCP, all transfers were generated using the version Reno of TCP
(mainly for ease of comparison with existing analytical models such as the one of [Padhye et al.,
1998]). If several TCP versions are being used, then one can account for the impact of the TCP
version on the throughput simply by adding the TCP version as a (categorical) parameter in the
graph. Also, in our experiments, we used transfer sizes uniformly distributed between 6 and 150
MBytes (for the Mininet experiments) and between 6 and 60 MBytes (for the real FTP transfers).
While these distributions are not representative of the distribution of transfer sizes on the Internet,
they were chosen to have a good statistical sample to evaluate the impact of the transfer size.
Indeed, the transfer size is a parameter in our model (nbbytes), and we observe in the causal graphs
that it does not directly affect the throughput but only directly affects the number of timeouts (the
same holds for the causal graph of the real FTP transfers shown in [14]). Note also that the chosen
distributions exclude small transfers (since our smallest transfer is 6 MB) hence our model will
give accurate predictions only for transfers for which the transient beginning of TCP does not
play a large role. In reality, file transfers on the Internet have a heavy-tailed distribution (typically
well-modeled by a Pareto distribution of infinite variance [38], [21]) and this is well-known to
bring statistical issues in particular for estimation of the mean and evaluation and simulation of
flow-level bandwidth sharing (see [Rojas-Mora et al., 2011] which, interestingly, argues in favor
of using bootstrap due to the heavy-tailed distribution of transfer sizes). It would be interesting
to study how our results are changed when using a heavy-tailed distribution of transfer sizes. We
suspect, however, that we would not observe much change because (i) the transfer size is part of
our model so that our prediction of throughput is conditioned on the size of each transfer, and
(ii) the observed impact of the transfer size is the same for Mininet experiments and for real FTP
transfers which face real cross traffic that is likely heavy-tailed (probably because all important
parameters impacted by the cross traffic such as retransmission score are already included in the
model).

Finally, we used our causal methods to study another part of communication networks, DNS.
For a user to access any resource on the Internet, it is necessary to first locate a server hosting
the requested resource. The Domain Name System service (DNS) represents the first step in this
process, translating a human readable name, the resource host name, into a machine readable
name, an IP address. With the expansion of Content Distribution Networks (CDNs), the DNS
service has seen its importance increase. In a CDN, objects are replicated on different servers
geographically distributed in order to decrease the distance from the client to a server hosting the
object that needs to be accessed. To attribute the demand of a user that wants to access an object
hosted by a CDN, the CDN makes use of the DNS service to infer client localization. While
most of the Internet Service Providers (ISPs) offer a DNS service to their customers, it is now
common to see clients using a public DNS service instead. This choice may have an impact on the
performance of clients retrieving objects from a given CDN.

In our work, we used our causal methods to study the impact of choosing one DNS service
instead of another and we compare the performance of a large European ISP DNS service with
the one of a public DNS service, Google DNS. Our approach exposed the structural dependencies
of the different parameters impacted by the DNS service used and we showed how to model these
dependencies with a Bayesian network. This model allowed us to explain and quantify the benefits
obtained by clients using their ISP DNS service and to propose a solution to further improve their
performance. Specifically, we predicted the performance a client using the local DNS service
would have experienced if redirected to servers the Google DNS service would have redirected it
to. In this way, we could estimate the impact of the local DNS service redirection strategy on the
client performance and quantify the corresponding performance difference.
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When comparing the performance of the local DNS and the Google DNS users, we observed
that Google DNS users experience a throughput whose difference with the one of the local DNS
service users cannot simply be explained by the redirection of Google DNS users to more distant
Akamai servers. Based on the causal graph, we formulated the hypothesis that the configurations
of the Akamai servers Google DNS users are redirected to allow them to eventually experience
a performance similar to the one of the local DNS service users. This hypothesis is verified by
our prediction consisting in giving to Akamai servers serving the local DNS users a minimum
congestion window equivalent to the one of the Akamai servers serving Google DNS users. We
estimated the gain in throughput corresponding to this intervention to be 32%. By comparison,
the gain in terms of throughput corresponding to the better redirection of the local DNS users is
estimated to 14%.

Overall, our work is amongst the first to successfully apply causal analysis in the engineering
domain.

Summary of our contribution to causal analysis for communication networks performance:
We propose a variation of the KCI independence test using bootstrap that solves practical issues
and allows inferring a causal graph from real-world datasets. We propose a prediction method
based on copulae. We apply causal analysis to investigate how to improve the performance of
TCP and DNS.

4.2 Incentives in networks with congestion

The consumer demand is steadily growing in many network areas, including communication net-
works and others, and numerous studies indicate that this growth will continue. The growing
demand forces the providers to adopt congestion management schemes. However, it not possible
to eliminate congestion in networks only using engineering techniques or smart queueing proto-
cols. This is because, ultimately, what determines the network load at a given time is the demand,
and demand is generated by humans with a natural tendency for non-uniform patterns in most net-
works: we observe peak times in road networks, energy networks, mobile networks, web servers,
etc. Flattening the demand curve (either to reduce congestion in road or communication networks
or to reduce production costs in energy networks) therefore requires acting on the demand.

4.2.1 Context

The literature has considered the use of incentives and pricing mechanisms to reduce the level of
network congestion. Many pricing mechanisms have been proposed to manage quality of services
(QoS) in networks, see e.g., surveys [Henderson et al., 2001, Tuffin, 2003, Sen et al., 2012, Sen
et al., 2013]. For instance, in [Honig and Steiglitz, 1995], Honig and Steiglitz propose a usage-
based pricing mechanism, and analyze it using a model with delay-sensitive users. Their results
show how to find the price that maximizes the provider’s revenue by solving a fixed-point equation.
A similar model is used in [Basar and Srikant, 2002] where Başar and Srikant analyze the many-
users limit. They show that, as the number of users increases, the provider’s revenue per unit of
bandwidth increases and conclude that this gives providers an incentive to increase their network
capacity. In a number of papers, e.g., [Mendelson and Whang, 1990, Odlyzko, 1999, Marbach,
2004], pricing mechanisms based on multiple classes of customers with different priorities are
proposed and analyzed in terms of equilibrium achieved and optimal price per class. In [Shen
and Başar, 2007,Shen and Başar, 2011], Shen and Başar investigate the performance of non-linear
pricing in a model similar to [Basar and Srikant, 2002] and find an improvement of up to 38% over
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linear pricing in some cases. However, in all the aforementioned papers, the demand is assumed
stationary and the price is fixed independently of the instantaneous network congestion or of the
time of the day.

A few papers have proposed mechanisms with prices dependent on congestion levels. In
[Paschalidis and Tsitsiklis, 2000], Paschalidis and Tsitsiklis propose a congestion-based pric-
ing mechanism in the context of loss networks (i.e., phone). They provide a dynamic program-
ming formulation of the revenue maximization problem and of the welfare maximization problem.
Then, they show that this dynamic congestion pricing mechanism can be well approximated by a
simpler static time-of-day pricing. An alternative mechanism called “Trade & Cap”, was recently
proposed by Londoño, Bestavros and Laoutaris [Londoño et al., 2010]. It works in two phases.
First, users engage in a trading game where they choose an amount of reserved bandwidth slots
to buy for hard-constraints traffic. In the second phase, the remaining bandwidth is allocated to
users as fluid bandwidth, in proportion of their remaining “buying power”. They show that this
mechanism smoothes the aggregate demand to a certain level. In their model, users have a cost
function that increases linearly with the total demand in a given slot. Although interesting, these
schemes are complex, do not consider the elasticity of user demand do not allow user utility to be
an arbitrary function of the congestion level.

Prior to our study, two recent papers had analyzed time-of-day pricing mechanisms over n time
slots [Jiang et al., 2008, Joe-Wong et al., 2011]. In [Jiang et al., 2008], Jiang, Parekh and Walrand
consider a model where users have unit demand. Each user chooses one time-slot in which he
transmits its entire demand, to maximize his utility. The authors of [Jiang et al., 2008] obtain a
bound on the price of anarchy due to users selfishness. In [Joe-Wong et al., 2011], Wong, Ha
and Chiang consider a model with users transmitting sessions of random length. Sessions arrive
as a Poisson process and each session is characterized by a waiting function which reflects the
willingness of the user to delay his entire session for a given time, in exchange for a reward given
by the provider. The authors show how to compute the optimal reward levels in order to maximize
the provider profit by balancing the congestion cost due to demand exceeding capacity and the
reward amount. Further analysis of this mechanism called “TUBE”, as well as implementation
are provided in [Ha et al., 2012]. However, in their model, users are only sensitive to prices (the
effect of congestion on the user utility is not considered) and the analysis is not game-theoretic.
Their model also suffer from other limitations that we mention below in the variant for electricity
networks. Finally, all models mentioned above rely on optimizing the parameters of a scheme
based on estimations of the consumers response (i.e., utility).

Many recent studies have also focused on flattening the demand curve in electricity networks.
There, the use of incentives is usually referred to as a Demand Response (DR hereinafter) program,
and DR programs are envisioned to be a key feature of the Smart Grid paradigm [Albadi and
El-Saadany, 2008] where, by means of economic incentives (discounts or penalties), users are
encouraged to rearrange their consumption in response to the network state, thus mitigating the
grid overload and driving wholesale prices down.

Several analytical models are available in the literature, which describe and quantify the ef-
fects of DR mechanisms. Among these contributions, the authors of [Joe-Wong et al., 2012] adapt
the model of [Joe-Wong et al., 2011] to the electricity framework. They study how an energy
provider should select time-dependent discounts to minimize its production costs. They assume
that the percentage of users who shift their consumption from slot i to slot j is a decreasing func-
tion of the temporal distance between slots i and j and a concave and increasing function of the
discount offered in slot j (R j), independent from discounts in other slots. This leads to a simple
convex optimization problem for the selection of optimal time-dependent discounts. However, the
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assumption that the percentage of users who shift their consumption from slot i to slot j is inde-
pendent from discounts in other slots is not realistic if we assume that each user chooses the time
slot that gives her maximal utility (hence compares the discounts in each slot); unless the provider
was able to make personalized offers and a have very precise forecast of the baseline consumption
of each user, which is unlikely. Several other studies consider similar models of time-dependent
pricing with n time slots [Li et al., 2014, Subramanian et al., 2013, Yang et al., 2014, Song et al.,
2014] and which suffer from similar limitations. Interestingly, we observe that these limitations
often come from the fact that the papers start from a macroscopic description of the population
that, if investigated more closely, turns out to hide assumptions about individual users that are not
consistent with reasonable microscopic (user-level) models.

In summary, we observe that the literature has two main shortcomings:

• All incentive schemes rely on the optimization of parameters from the estimation of the
users utility, which is sensitive to estimation errors.

• Time-dependent pricing models with n time slots are based on simplified macroscopic as-
sumptions that are not consistent with microscopic user-level models.

4.2.2 Our contributions

In this context, we made two main contributions addressing the two shortcomings mentioned
above. The first is the proposition of a “fixed budget rebate” incentive mechanism based on the
ideas of lotteries and the proof that this mechanism is more robust than previous mechanism with
fixed discounts to errors in the estimation of the users utilities. We present here only the main
elements of our model and the main results, all details can be found in [15].

Model and incentive mechanisms

We consider a population with a large number of users represented as a continuum, sharing a
resource of fixed capacity. There are two time slot: peak and off-peak. Each user has a type θ ∈ Θ

that parameterizes his utility. The types distribution in the population are represented by a measure
µ.

In [15], we develop a complete model where each user chooses his consumption in the peak
and off-peak time, with elastic demand, and then show that under very mild assumptions (that the
off-peak time has very low delay due to congestion), this model is equivalent to a simplified model
where each user chooses a quantity xθ ∈ [0, dp] corresponding to the reduction of demand in the
peak time compare to a maximal peak time demand dp (e.g., a cap), to maximize a utility

uθ(xθ,G) = ūθ + (dp − xθ)h(G) − cθ(xθ) − p, (4.1)

where

G =

∫
Θ

xθdµ(θ) (4.2)

is the aggregate peak-time demand reduction, which we view here as a public good. In (4.1), ūθ
is a constant corresponding to the maximal user utility in the absence of delay, h(·) corresponds
to the (unit) benefit from the public good, i.e., to the unit benefit from lower congestion at peak
time (computed from the delay reduction) and cθ(·) corresponds to the cost of contribution (coming
from a decrease in utility representing the fact that the user prefers peak time), and p is the price of
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a monthly subscription. We assume that h(·) is twice differentiable, strictly concave and increasing;
cθ(·) is positive, differentiable and strictly convex and increasing; and supθ∈Θ c′θ(dp) < ∞, (θ ∈ Θ).

We define a Nash equilibrium of the non-atomic game defined above as a function x(eq) : Θ→

[0, dp] such that for all θ ∈ Θ, uθ(xθ, x
(eq)
−θ ) ≤ uθ(x(eq)

θ , x(eq)
−θ ),∀xθ ∈ [0, dp]. As is typical in problems

involving public goods, the Nash equilibrium of the non-atomic game defined above does not
coincide with the profile x∗ that maximizes the social welfare defined by

W =

∫
Θ

uθdµ(θ). (4.3)

To align Nash equilibrium and social optimum objectives, the service provider can design
mechanisms to incentivize users to reduce their peak-time demand. Here, we compare two differ-
ent incentive mechanisms: a fixed-budget rebate mechanism (denoted R or FBR) and a time-of-
day pricing mechanism (denoted T or TDP). Each mechanism introduces a reward based on the
peak-time demand reduction xθ below the maximum dp. For the service provider to finance the
respective reward, each mechanism also introduces an increase in the subscription price. (How-
ever, we show that each user’s net utility can be improved even with this price increase. ) With
mechanism j ∈ {R,T }, the user utility becomes

u j
θ(xθ,G) = uθ(xθ,G) + M j(xθ,G), (θ ∈ Θ). (4.4)

The fixed-budget rebate mechanism consists in giving each user a reward proportional to his
fraction of the total contribution, i.e., of the functional form:

MR(xθ,G) = R ·
xθ
G
− ∆pR, [fixed-budget rebate] (4.5)

where R is a parameter of the mechanism chosen ex-anti by the provider. In practice, this mech-
anism could be implemented via randomization or using other implementations. We notice here
that the fixed-budget rebate mechanism introduces uncertainty in the users bill as the reward de-
pends on the amount shifted by the other users. However, this uncertainty is only one-sided: the
maximum bill is known and only the reward amount is uncertain. This asymmetry is crucial to
ensure good adoption of the mechanism.

The time-of-day pricing mechanism corresponds to a fixed reward per unit of shifted demand:

MT (xθ,G) = r · xθ − ∆pT , [time-of-day pricing] (4.6)

where r is a parameter of the mechanism chosen ex-anti by the provider. This mechanism is a
variation of a conventional time-of-day pricing mechanism, with an off-peak price subsidy. Its
implementation is straightforward.

In (4.5) and (4.6), ∆p j denotes the increase in the subscription price that the service provider
imposes to finance the reward mechanism. Let G(eq) be the equilibrium level of public good (we
show that the Nash equilibrium is unique for both mechanism). We assume that the price ∆p j is
fixed in advance by the service provider to compensate the reward, i.e., such that

∫
Θ

M j(xθ,G(eq))dµ(θ) =

0 (note that the expression of the aggregate welfare (4.3) is thus not directly modified by the mech-
anisms, but only through the chosen contributions xθ). Then,

∆pR = R ·
dp

Dp
and ∆pT = rG(eq) ·

dp

Dp
, (4.7)
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where Dp =
∫
Θ

dpdµ(θ) = dpµ(Θ) is the aggregate maximal peak-time demand. From (4.7), we
immediately see that the service provider has to know the equilibrium to determine the price ∆pT

for the time-of-day pricing mechanism. An error in the estimation of G(eq) could have important
consequences. In contrast, such knowledge is not necessary for the fixed-budget rebate mechanism
where ∆pR only depends on the parameter R chosen by the service provider.

Overview of the results

Based on the model described above, we are able to establish the following results:

Social optimum: There exists a unique function x∗ that maximizes the social welfare W.

Nash equilibrium: For both mechanism and for any value of the parameter R or r, there exists a
unique Nash equilibrium profile x(eq). Moreover, we have x(eq) = x∗ for well chosen values of the
parameters:

R∗ = G∗h′(G∗)(D −G∗), (4.8)

and
r∗ = h′(G∗)(D −G∗). (4.9)

Variations with the parameter: For both mechanisms, the contribution of each user increases with
the reward parameter value. The social welfare increases untill its maximum achieved at R∗, r∗

and then decreases. There is a range of parameters around R∗, r∗ for which the social welfare is
higher than with no mechanism.

Finally, our main result with this model is to show that the FBR mechanism is more robust than
the TDP mechanism. To formalize that, we introduced perturbations of the cost-of-contribution
functions (arguably the most difficult for the provider to estimate well) of the form

c̃θ(·) = cθ(·) + ε · pθ(·), (4.10)

where ε is a real number and pθ : [0, dp]→ R is a continuously differentiable function satisfying

sup
θ∈Θ

sup
x∈[0,dp]

|p′θ(x)| < ∞.

We define G(eq)
R (ε) and G(eq)

T (ε) the equilibrium levels of public good in the games with perturbed
utilities, and similarly W(eq)

R (ε) and W (eq)
T (ε) the corresponding equilibrium welfares. Finally, let

G∗(ε) and W∗(ε) be the socially optimal level of public good with perturbed utilities. We introduce
the following conditions:

(C1′)
∣∣∣r′R(G) − r′S O(G)

∣∣∣ < ∣∣∣r′T (G) − r′S O(G)
∣∣∣, at G = G∗(0),

(C2′)
∣∣∣r′R(G) − r′S O(G)

∣∣∣ > ∣∣∣r′T (G) − r′S O(G)
∣∣∣, at G = G∗(0),

where r′R, r′T , r′S O are the respective derivatives of the unit rewards

rR(G) =
R
G
, rT (G) = r, rS O(G) = h′(G)(D −G). (4.11)

Then we are able to state our result as follows.

Proposition 4.2.1. There exists εm > 0 such that, for any perturbation (4.10) with ε , 0 and
|ε| < εm,
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Figure 4.4: Illustration of the robustness of the FBR mechanism.

(i) if condition (C1′) is satisfied, then∣∣∣∣G(eq)
R (ε) −G∗(ε)

∣∣∣∣ < ∣∣∣∣G(eq)
T (ε) −G∗(ε)

∣∣∣∣ ;
(ii) if condition (C2′) is satisfied, then∣∣∣∣G(eq)

R (ε) −G∗(ε)
∣∣∣∣ > ∣∣∣∣G(eq)

T (ε) −G∗(ε)
∣∣∣∣ .

The intuition behind Proposition 4.2.1 is the following: the mechanism with the unit reward
closer to the optimal unit reward rS O(G) have an equilibrium closer to the social optimum equi-
librium G∗(ε). Since rR(G) and rS O(G) are both decreasing functions, one expects rR(G) to be
closer to rS O(G) than rT (G). It is often the case. The fact that rR(G) decreases when G increases
is the closed-loop effect: the more users reduce their peak-time demand, the lower the incentive to
reduce it is. The is the main idea behind the robustness of the FBR mechanism. However, if rR(G)
decreases much faster that rS O(G), rT (G) can be closer to rS O(G). This possibility is covered by
case (ii) of Proposition 4.2.1.

From Proposition 4.2.1, we deduce the our main robustness result in terms of social welfare.

Theorem 4.2.2. There exists εm > 0 such that, for any perturbation (4.10) with ε , 0 and |ε| < εm,
we have:

(i) if condition (C1′) is satisfied, then the fixed-budget rebate mechanism is more robust than the
time-of-day pricing mechanism:

W(eq)
T (ε) < W(eq)

R (ε) < W∗(ε);

(ii) if condition (C2′) is satisfied, then the time-of-day pricing mechanism is more robust than the
fixed-budget rebate mechanism:

W (eq)
R (ε) < W (eq)

T (ε) < W∗(ε).

Figure 4.4 illustrates the robustness of the FBR mechanism as expressed in Proposition 4.2.1
and in Theorem 4.2.2, for a realistic scenario (see details of the utilities and parameters in [15]).

Note that in the previous exposition derived from [15], we used a non-atomic game directly.
In another paper [34], we started from a model with a finite number of players and studied the
convergence as the number of players tends to infinity.
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The case of n time slots for electricity networks

Finally, our second contribution [23] was targeted to electricity networks, where usage patterns
tend to be more complex and it makes more sense to consider a model with n time slots. In this
context, finding an appropriate incentive scheme and optimizing the parameters is difficult, let
alone studying the robustness. As mentioned above, most papers start from a macroscopic model
of the population that leads to an easy optimization problem to compute the optimal prices or
discounts. Our contribution started by showing that these macroscopic models hide assumptions
and implicit requirements that are not realistic when looking at the user level; in particular that the
provider can make personalized offers and has a perfect estimate of each individual’s consumption
in each time slot. Then, we explored four DR mechanisms with different levels of complexity:

1. the base mechanism corresponds to an optimization problem similar to the one considered
in [Joe-Wong et al., 2012], it requires personalized offers and individual consumption fore-
casts; the energy production cost is optimized over the discount values, each of which is
offered to a given fraction of the population,

2. the optimized mechanism takes full advantage of personalized offers and consumption fore-
casts by minimizing the cost over both the discount values and the population fractions to
which the discounts are offered,

3. the robust mechanism relies on personalized offers, but does not need individual consump-
tion forecasts,

4. finally the broadcast mechanism (analogous to that in [Yang et al., 2014]) needs neither of
the two features and just broadcasts the discounts to all users.

Interestingly, contrarily to prior studies, we find that the cost-minimization problems resulting
from our DR mechanisms are not convex (even for the base mechanism). Nevertheless, simple
heuristics can identify (potential) minima in a reasonable amount of time in realistic scenarios.
Then, our numerical results show that the simpler robust and broadcast mechanisms achieve sig-
nificantly lower cost reductions than the optimized mechanism, which is difficult to implement,
but that the gap reduces when the population’s flexibility increases. Our results argue for more
detailed models at the user level to evaluate the feasibility and benefits of incentive schemes. In
future work, we plan to see if we can also make the incentive schemes more robust by introducing
ideas from lotteries as we did in the simpler case of two time slots.

Summary of our contribution to incentives for network decongestion:
We propose a new incentive scheme (fixed-budget rebate) for the decongestion of the peak time in
networks in a two time-slots model; and show that it is more robust than other schemes to errors
in the estimation of the users utilities. For the case of n time-slots for electricity networks, we
show that existing models hide crucial unrealistic assumptions, we argue for the use of user-level
models and we study different possible schemes under such a model.

4.3 Cloud resources allocation

Cloud computing has now become the main paradigm for computing, storage and many other
components that are crucial for user-centric services. The design of appropriate pricing schemes
for cloud resources is therefore of great importance. Given the capacity of a cloud, an important
objective is to increase the resource utilization so as to allow more tenants to be served. In other
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words, the pricing problem cannot be separated from the question of tasks scheduling in the cloud
because we need to evaluate, for a given demand, the performance that can be obtained. In this
context, our initial contribution [11], [24] is in the area of tasks scheduling. We mention it here
very briefly although it does not involve game theory or statistical learning, because we consider
it as a pre-requisite to move towards pricing which will involve both game theory and statistical
learning.

4.3.1 Context

In an effort to improve the efficiency of operation of clouds by leveraging the flexibility of user
demand, there has been a significant attention on mechanisms to allow tenants to describe more
precisely the characteristics of their jobs [Jalaparti et al., 2012, Ishakian et al., 2012], in particular
deadlines. In the meantime, such technical progress also raises new algorithmic challenges on
how to optimally schedule a set of malleable tasks with deadlines [Jain et al., 2011, Jain et al.,
2012, Lucier et al., 2013, Menache et al., 2014, Azar et al., 2015, Bodik et al., 2014].

A fundamental model in this direction is the one of [Jain et al., 2011, Jain et al., 2012] in
which a set of n malleable batch tasks has to be scheduled on C identical machines. All the jobs
are available from the start and each of them is specified by a workload, a parallelism bound, a
deadline and a value. Here, the number of machines assigned to a task can change during the
execution and the parallelism bound decides the maximum amount of machines that can process
a task simultaneously; however, the workload that is needed to complete a task will not change
with the number of machines. Beyond the analysis of this basic and important model, efforts have
been devoted to its online version [Lucier et al., 2013,Menache et al., 2014,Azar et al., 2015] and
its extension [Bodik et al., 2014, Ferguson et al., 2012, Nagarajan et al., 2013] in which each task
contains several subtasks with precedence constraints.

For the fundamental model in [Jain et al., 2011, Jain et al., 2012] under the objective of maxi-
mizing social welfare (i.e., the sum of values of tasks completed before their deadline), Jain et al.
have proposed an (1 − C

2C−k )(1 − ε)-approximation algorithm via deterministic rounding of linear
program in [Jain et al., 2011] and a greedy algorithm GreedyRTL via dual fitting technique that
achieves an approximation ratio of C−k

C · s−1
s in [Jain et al., 2012]. Here, k is the maximal par-

allelism bound of tasks, and s (≥ 1) is the slackness which intuitively characterizes the resource
allocation flexibility (e.g., s = 1 means that the maximal amount of machines have to be allo-
cated to the task at every time slot until its deadline to ensure full completion). However, it seems
difficult to improve those results using linear-programming-based techniques.

4.3.2 Our contributions

In this context, we proposed a new method to address the problem of scheduling malleable batch
tasks with deadlines. Our results can be summarized as follows (see details in [24]).

Core result. Our core result is the first optimal scheduling algorithm so that C machines are opti-
mally utilized by a set of malleable batch tasks S with deadlines in terms of resource utilization.
We first identify the basic constraints of malleable tasks and the optimal state in which C machines
can be said to be optimally utilized by a set of tasks. Then, we propose a scheduling algorithm
LDF(S) that achieves such an optimal state.

Applications. This core result has applications in several new or existing algorithmic design and
analysis problems for scheduling malleable tasks under different objectives. In particular, we
provide:
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(1) an improved greedy algorithm GreedyRLM with an approximation ratio s−1
s for the social

welfare maximization problem with a polynomial time complexity of O(n2);

(2) the first exact dynamic programming (DP) algorithm for the social welfare maximization
problem with a pseudo-polynomial time complexity of O(max{n2, nCLML});

(3) the first exact algorithm for the machine minimization problem with a polynomial time
complexity of O(n2).

Here, L, D, k and M are the number of deadlines, the maximal workload, the maximal parallelism
bound, and the bound of the maximal deadline of tasks. Finally, we also prove that s−1

s is the best
approximation ratio that a general greedy algorithm can achieve.

Summary of our contribution to cloud resource allocation:
We propose new algorithms for scheduling malleable tasks with deadlines on multiple machines.



Chapter 5

Conclusion and perspectives

User-centric services based on personal data have taken a central place in our lives and economies.
With great improvements to our lives, however, they also brought a set of important questions, in
particular critical security and privacy problems that potentially threaten our well-being as well
as the development and sustainability of the user-centric services ecosystem. This manuscript
summarized our contributions to developing and studying methods that can be useful to address
security, privacy and network systems performance problems.

Through our work presented in this manuscript, we showed that game theory is a key tool
to tackle security, privacy and network systems performance questions because these questions
involve human users whose behaviors are determined by incentives provided by the system. Sta-
tistical learning is also a key tool because it is at the core of user-centric services, both to secure
the system and to exploit personal data. Even more importantly than those two tools in isolation
though, Chapters 2 and 3 reveal that what is really needed to tackle security and privacy issues in
user-centric services is a combination of game theory and statistical learning to find new learning
algorithms that work well in situations where strategic human agents can alter the data. This much
broader research challenge, for which the results of Chapters 2 and 3 only offer very preliminary
answers, is the main perspective of my research for the years to come. I develop it briefly below.
I also mention a second research perspective that investigates how learning algorithms affect hu-
mans in terms of fairness, transparency and understandability. Whereas machine learning mostly
aims at automating decision making, these two research perspectives aim at bringing back the
human perspective and can be summarized as the study of ‘humans versus machine learning’.

5.1 Learning from strategic data

Statistical learning exploded in the past decades and had a tremendous impact in many application
domains such as computer vision or bioinformatics. As we saw, it also had a great impact in the
digital area by enabling the development of user-centric services exploiting personal data.

Despite this success, most current learning algorithms face a fundamental limitation: they
were developed and studied under the assumption that the data distribution is independent of the
learning algorithm (the ‘i.i.d. assumption’). While this assumption holds for instance when the
data is generated by Nature, it fails when the data is generated by a strategic agent whose objective
depends on the algorithm’s outcome–we call it strategic data; which occurs in several important
applications. In particular, as we saw, digital user-centric services face two kinds of strategic data:
personal data provided by privacy-conscious users and security data generated by attackers. In
both cases, using a standard learning algorithm that ignores the strategic nature of the data can
lead to poor performance and there is a need to design new learning algorithms to improve privacy

47
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and security of user-centric services.
Our overall goal is to create and study new learning algorithms adapted to strategic data for

privacy and security. To address this challenge, we propose to build on the methodology initiated
in Chapters 2 and 3, that is to build game-theoretic models involving learning agents that takes
into account the objective of the agents providing or generating data (and of the learner), and to
use their solutions to derive optimal learning algorithms for strategic data. We aim at working
towards a general theory of learning from strategic data in the two contexts of privacy and security
which lead to different types of models.

Learning from strategic personal data of privacy-conscious users. We want to create and study al-
gorithms to learn from personal data that optimize the precision of the models learned given the
objectives of privacy-conscious agents revealing the data. To this end, we plan to develop models
building on the one in Chapter 3 with many agents (the users) choosing the precision of the data
they reveal with an objective that combines privacy concern and interest in the learning outcome
(public good). We will move towards more realistic models with incomplete information using
a Bayesian framework, and extend our setting to non-linear regression and to recommendation
problems. Based on the analysis of the equilibrium solutions of those models, we will then be
able to tackle key learning questions such as: what is the optimal learning algorithms? what is the
performance of standard learning algorithms on strategic data? how can we quantify the ineffi-
ciency due to the strategic nature of data? or how does the learning accuracy vary with the number
of users? This last question opens a very broad perspective of developing results parallel to the
statistical learning theory results (risk bounds, sample complexity and link to VC dimension) for
the case of strategic data. We know that, in very simplistic cases [27], the rate of decrease of the
variance of the mean’s estimate is slower than the standard 1/n; hence we expect that most results
will be different for the strategic data case.

Learning from strategic data in security. We want to create classification algorithms from strategic
data for attack detection that handle well the adversarial scenario at stake. To this end, we plan
to develop models building on the one in Chapter 2 where the strategic data is a usage pattern
possibly generated by an attacker whose objective is to evade detection while achieving his attack
goal. While the model in Chapter 2 assumes complete information, we will model incomplete
information (on both sides) in a Bayesian setting and investigate solutions of both static models
(Bayesian Nash equilibrium) and dynamic models (Nash equilibrium of repeated and stochastic
games) that account for different aspects of the system. Again, these solutions should allow us to
derive optimal learning algorithms (incl. sequential learning) for a variety of security scenarios
involving strategic data.

We note that our goal of deriving sequential learning algorithms for the security scenarios
involves the difficult question of solving nonzero-sum repeated games. We plan to approach that
by using simple classes of games (such as almost zero-sum) for which we hope to be able to
characterize the equilibrium and by looking for heuristics that can be shown to be almost optimal.
Then, our work on sequential learning could have many more applications than attack detection,
in security and outside. In security for instance, it could allow to do dynamic resource allocation
using a sequential version of the Blotto game, and it could also be applied to many other security
scenarios not involving digital systems (e.g., defense of critical infrastructure of cyber-physical
systems). Outside security, it could be useful for instance for dynamic pricing under competition.

In our work so far, we voluntarily limited ourselves to models that hit a good trade-off between
tractability and realism, so that we could extract clean and generic insights from the solutions. Nat-
urally, as we go on to more complex situations, we can expect that models will be less tractable.
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This will open a challenge of a more numerical or algorithmic nature on how to compute approxi-
mately optimal algorithms to learn from personal data.

Finally, the work proposed here only scratches the surface of the extent of statistical learning
methods. If our approach is successful, we hope that it can be ported to many other statistical
learning problems (clustering, causal analysis, non-parametric estimation, etc.).

5.2 Human-friendly learning algorithms

With the rise of user-centric services, there is also a growing concern about how the complex
learning algorithms at their core affect the users in inconspicuous ways. While users appreciate
the benefits of personalization, systems often reveal very little about the specifics of how it is
performed and users often have no possibility of determining whether the service that they receive
is biased or discriminating in any way, or more generally how the data that they provide affects
the service that they receive. In fact, this problem goes much beyond the world of online user-
centric services as data-driven decision making is progressively making its way in other domains
such as hiring, police, credit approvals, etc. So far, however, research in the space has mostly
been limited to providing anecdotical evidence of discrimination or of outrageous outcome from
learning algorithms on specific systems.

Our goal is to bring transparency and fairness to decision making systems based on learning
algorithms in a principled manner. This entails several different challenges:

Defining the notions of explanation and understandability: To some extent, bringing transparency
about an algorithm implies being able to explain to users how the algorithm works in a way that
they can understand, but it is very unclear how to define these two notions. Here, we want to
provide a definition that both complies with the intuitive notion that we have of understanding and
is rigorous to allow us to tackle theoretical questions of how to compute an explanation, how to
evaluate it, etc.

Building tools to bring transparency: Our second objective is to build tools and methods to bring
transparency in existing systems. A key challenge here is that it is usually too costly or impossible
to track all data that a given system has about a user and is using (as input to the decision making
algorithm) to select the service. To tackle this challenge, we want to investigate how to bring
transparency from the observation of the outputs (i.e., the service received by users) by proposing
a collaborative method based on collection (on a voluntary basis) of demographic information of
users. Using this idea, we are currently working on building a tool to bring transparency to targeted
advertising that would infer, from the outputs, what data the ad engine has about a user and why
he was targeted with a particular ad. This work entails both systems and inference challenges.

Designing fair learning algorithms: Finally, we want to tackle the question, from the perspective of
the algorithm’s designer, of how to design an algorithm as efficient as possible under the constraint
that the outcome is ‘acceptable’ for humans. Here, we will start by investigating acceptability as a
notion of fairness, but that could in principle cover much more general constraints that offer many
perspectives.

To conclude, let us finally remark that our two broad research perspectives on ‘humans versus
machine learning’ are not without links. In particular our ideas to build tools to bring transparency
involve collecting demographic information from users, which is personal data. We plan to let
users choose the precision of the data given and to use the algorithms to learn from strategic
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personal data mentioned earlier. That will allow us both to improve the quality of our transparency
tool and to test, in the real-world, our new algorithms to learn from strategic data.
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Visiting researcher, hosted by Prof. Krishna Gummadi
Funded by a Humboldt Research Fellowship for experienced researchers
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Visiting researcher, hosted by Prof. Krishna Gummadi
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Visiting researcher in the EECS department, hosted by Prof. Jean Walrand
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Visiting member of the Network Economics Group, hosted by Prof. Jean Walrand

University of Waterloo, Waterloo, ON, Canada Oct. 2010
Visiting researcher in the ECE department, hosted by Prof. Ravi Mazumdar
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École Normale Supérieure de Lyon, Lyon, France Apr. 2006 – July 2006
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Statistical data analysis every Fall since 2013
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Game Theory every Fall since 2013
Instructor, graduate course (short)

Network Economics every Fall since 2012
Instructor, graduate course (short)

Performance Evaluation of Computer Systems Spring 2012 and 2013
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University of California, Santa Cruz, CA, USA
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École Normale Supérieure de Lyon, Lyon, France
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Chair of the steering committee of Sophia-networking (sophia-networking.org) (since 2013)

Member of the scientific council of the Labex UCN@Sophia (since 2015)

Member of the steering committee of the “thematic network 2” of Institut Mines-Telecom (since 2014)

Conference organization

Registration chair of ACM SIGMETRICS 2016

Co-organizer, seminar on modeling, optimization and control in wireless networks, Paris 2015

PC co-chair of NetEcon 2015 (with Aaron Roth and Adam Wierman)

PC co-chair of W-PIN+NetEcon 2014 (with John Chuang)

PC co-chair of W-PIN+NetEcon 2013 (with David Parkes and Jean Walrand)

Registration chair of ACM SIGMETRICS 2013

PC co-chair of W-PIN 2012 (with Jean Walrand)

Editorial activities

Guest editor, ACM TOIT special issue on economics of security and privacy (2016)

Associate editor, ACM TOIT (since 2015)

Guest editor, ACM TOIT special issue on pricing and incentives in networks and systems (2013)

TPCs

WiOpt 2017

NetGCooP 2016

WWW 2016 (demo track)

SDP 2016

FC 2016

ITC 2016

WWW 2015 (demo track)

SDP 2015

NetGCooP 2014

ACM SIGMETRICS 2014

SDP 2014

ICQT 2013

W-PIN+NetEcon 2013

SDP 2013

GameSec 2012

W-PIN 2012

CFIP 2009 (shadow)

Invited referee for journals and conferences (each listed only once)
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ACM Transactions on Privacy and Security, IEEE Transactions on Information Forensics and Secu-
rity, ACM Transactions on the Web, IEEE Networks, IEEE Transactions on Dependable and Secure
Computing, ACM Transactions on Information and System Security, Operation Research, IEEE/ACM
Transactions on Networking, International Journal of Information Security, ISAAC 2015, IEEE INFO-
COM 2013, Computer Communications journal, IEEE Transactions on Communications, Computer
Networks Journal, IEEE Communication Letters, Stochastic Models, ACM SigComm CCR, 20th ITC
Specialist Seminar on Network Virtualization - Concepts and Performance, CFIP 2009

Evaluation of PhD dissertations

Committee member for the PhD of Antoine Rault (Inria Rennes, 2016)

Reviewer and committee member for the PhD of Áron Lászka (Budapest University of Technology
and Economics, 2014)

Member of the mid-term evaluation committee for 7 PhD students (since 2013)

Panel member for grant proposal selection

Expert for the F.R.S.-FNRS, Belgium (2016)

Member of the selection committee for the “Future & Ruptures” program from IMT (2014)

External reviewer for the Informatics and Mathematics Panel of the Academic Research Council,
Ministry of Education, Singapore (2014)

Professional membership

IEEE, ACM, Data Transparency lab, GDR Multifractal, GDR Jeux

Honors and awards
Data Transparency lab research grant (top 11% of the projects) 2016

Humboldt Research Fellowship for experienced researchers (Alexander von Humboldt Foundation) 2016

Symantec research faculty gift 2015

Data Transparency lab travel grant (top 30% of the projects) 2015

Best Paper Award Runner-up at IFIP Performance (6 papers selected) 2010

ERCIM Alain Bensoussan European Post-doctoral fellowship (declined) 2010

Best Student Demonstration Award at ACM SIGMETRICS/Performance 2009

PhD fellowship and teaching assistanship from École Normale Supérieure de Lyon 2006

Advising experience
Postdocs

Michela Chessa (Sept. 2013–Aug. 2015, now assist. Prof at University of Nice Sophia-Antipolis)

PhD students

Quan Dong Vu (Start expected Dec. 2016, co-advised with Alonso Silva from Nokia Bell Labs)

Amine Lahouel (Since Sept. 2016, co-advised with Cédric Hebert from SAP)
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Athanasios Andreou (Since Oct. 2015, co-advised with Oana Goga from MPI-SWS)

Xiaohu Wu (Nov. 2012–Feb. 2016, Ph.D. Telecom ParisTech, now postdoc at Aalto University)

Hadrien Hours (Nov. 2011–Sep. 2015, Ph.D. Telecom ParisTech, co-advised with Ernst Biersack,
postdoc at ENS Lyon, now data scientist at Booking.com)

Interns

Yannick Terme (Eng. EURECOM/Telecom ParisTech, intern at MPI-SWS in July-August 2016, now
student at ENSAE)

Nina Grgić-Hlača (M.A. University of Zagreb, intern at EURECOM in Feb.-July 2016 with an ERAS-
MUS+ grant, now PhD student at MPI-SWS)

Vijay Kamble (Ph.D. UC Berleley, intern at EURECOM in April-May 2015, now postdoc at Stanford)

Athanasios Andreou (M.Sc. EURECOM, intern at MPI-SWS in Feb.-Sept. 2015, co-advised with
Oana Goga and Krishna Gummadi, now Ph.D. student at EURECOM)

Yifan Pi (B.Sc. Tsinghua University, intern at EURECOM during summer 2013, now software engi-
neer at Google)

Student projects

Supervision of 15+ semester projects and master projects since 2012 (2-3 per semester)

Research funding
ANR Tremplin-ERC 2017 – 2018
CONNECTED: Towards secure and private personal-data-based online services in the networked world
(e 150k)
Patrick Loiseau (PI)

Cifre contract with Nokia Bell Labs 2016 – 2019
Learning in Blotto Games and Applications to Modeling Attention in Social Networks (e 45k)
Patrick Loiseau (co-PI), Alonso Silva (co-PI at Nokia Bell Labs)

Cifre contract with SAP Research 2016 – 2019
Approche de l’anonymisation des données en fonction du niveau de risque associé (e 45k)
Patrick Loiseau (co-PI), Cédric Hebert (co-PI at SAP Research)

Data Transparency lab research grant 2016 – 2017
TranspAd: A Collaborative Tool to Bring Transparency to Targeted Advertising (e 50k)
Patrick Loiseau (co-PI), Oana Goga (co-PI)

Institut Mines-Telecom Futur&Ruptures program, doctoral support grant 2015 – 2018
TRANSPA: Bringing transparency to personalized services through statistical inference (e 108k)
Patrick Loiseau (PI)

France-Berkeley fund 2014 – 2016
Multi-armed bandit games and applications ($ 10k)
Patrick Loiseau (PI), Jean Walrand (PI)

Symantec research faculty gift 2015
Cyber insurance ($ 30k)
Patrick Loiseau (PI)
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Institut Mines-Telecom Futur&Ruptures program, post-doctoral support grant 2015
MONET: MONETization of personal data in social networks: A game-theoretic approach (e 30k)
Patrick Loiseau (PI)

Labex UCN@Sophia, post-doctoral support grant 2013 – 2015
PRIMO: PRIvate data MOnetization: a public good approach using cooperative game theory (e 90k)
Patrick Loiseau (PI)

Labex UCN@Sophia, doctoral support grant 2013 – 2016
Mathematical tools for the smart grid (e 105k)
Patrick Loiseau (co-PI), Giovanni Neglia (co-PI)

Institut Mines-Telecom Futur&Ruptures program, doctoral support grant 2012 – 2015
Robust pricing of cloud resources through mean-field games (e 121k)
Patrick Loiseau (PI)

Publications
PhD dissertation

[1] Patrick Loiseau. Contributions to the Analysis of Scaling Laws and Quality of Service in Networks:
Experimental and Theoretical Aspects. PhD thesis, ENS Lyon, December 2009.

Edited volumes

[2] Patrick Loiseau, Aaron Roth, and Adam Wierman. The 10th Workshop on the Economics of Net-
works, Systems and Computation (NetEcon 2015). ACM Performance Evaluation Review, December
2015. (Guest editorial).

[3] John Chuang and Patrick Loiseau. The joint Workshop on Pricing and Incentives in Networks and
Systems (W-PIN+NetEcon 2014). ACM Performance Evaluation Review, 42(3):2–3, December 2014.
(Guest editorial).

[4] Costas Courcoubetis, Roch Guérin, Patrick Loiseau, David Parkes, Jean Walrand, and Adam Wier-
man. Special Issue on Pricing and Incentives in Networks and Systems: Guest Editors’ Introduction.
ACM Transactions on Internet Technology, 14(2–3):8:1–8:3, October 2014. (Guest editorial).

[5] Patrick Loiseau, David Parkes, and Jean Walrand. The joint Workshop on Pricing and Incentives
in Networks and Systems (W-PIN+NetEcon 2013). ACM Performance Evaluation Review, 41(4):2–3,
March 2014. (Guest editorial).

[6] Patrick Loiseau and Jean Walrand. The first Workshop on Pricing and Incentives in Networks (W-
PIN 2012). ACM Performance Evaluation Review, 40(2):12–13, September 2012. (Guest editorial).

Preprints

[7] Athanasios Andreou, Oana Goga, Patrick Loiseau, and Krishna P. Gummadi. Identity vs. attribute
disclosure risks for users with multiple social profiles, 2016. (Preprint. Under Review.).

[8] Vijay Kamble, Patrick Loiseau, and Jean Walrand. Regret-optimal strategies for playing repeated
games with discounted losses, 2016. (Preprint. Under Review. Available as arXiv:1603.04981.).

[9] Lemonia Dritsoula, Patrick Loiseau, and John Musacchio. A game-theoretic analysis of adversarial
classification, 2016. (Preprint. Under Review. Available as arXiv:1610.04972.).

[10] Michela Chessa and Patrick Loiseau. A cooperative game-theoretic approach to quantify the value
of personal data in networks, 2016. (Preprint. Available at http://www.eurecom.fr/~loiseau/
articles/ChessaLoiseau-quantif.pdf).
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[11] Xiaohu Wu and Patrick Loiseau. Algorithms for scheduling malleable cloud tasks, 2016. (Preprint.
Under Review. Available as arXiv:1501.04343.).

Articles in journals

[12] Raimo Kantola, Hammad Kabir, and Patrick Loiseau. Cooperation and End-to-End in the Inter-
net. International Journal of Communication Systems, 2016. To appear.

[13] Hadrien Hours, Ernst Biersack, Patrick Loiseau, Alessandro Finamore, and Marco Mellia. A
Study of the Impact of DNS Resolvers on CDN Performance Using a Causal Approach. Computer
Networks, Special issue on “Traffic and Performance in the Big Data Era”, 2016. To appear.

[14] Hadrien Hours, Ernst Biersack, and Patrick Loiseau. A causal approach to the study of TCP
performance. ACM Transactions on Intelligent Systems and Technology, Special Issue on “Causal
Discovery and Inference” (K. Zhang, J. Li, E. Bareinboim, B. Schölkopf, and J. Pearl, editors),
7(2):25:1–25:25, January 2016.

[15] Patrick Loiseau, Galina Schwartz, John Musacchio, Saurabh Amin, and S. Shankar Sastry. In-
centive mechanisms for internet congestion management: Fixed-budget rebate versus time-of-day
pricing. IEEE/ACM Transactions on Networking, 22(2):647–661, 2014.

[16] Patrick Loiseau, Claire Médigue, Paulo Gonçalves, Najmeddine Attia, Stéphane Seuret, François
Cottin, Denis Chemla, Michel Sorine, and Julien Barral. Large deviations estimates for the multiscale
analysis of heart rate variability. Physica A, 391(22):5658–5671, November 2012.

[17] Paulo Gonçalves, Shubhabrata Roy, Thomas Begin, and Patrick Loiseau. Dynamic resource man-
agement in clouds: A probabilistic approach. IEICE Transactions on Communications, special
section on Networking Technologies for Cloud Services, E95-B(8):2522–2529, 2012. (Invited paper).

[18] Julien Barral and Patrick Loiseau. Large deviations for the local fluctuations of random walks.
Stochastic Processes and their Applications, 121(10):2272–2302, 2011.

[19] Patrick Loiseau, Paulo Gonçalves, and Pascale Vicat-Blanc Primet. A long-range dependent model
for network traffic with flow-scale correlations. Stochastic Models, 27:333–361, 2011.

[20] Edmundo Pereira de Souza Neto, Elmer Andrés Fernández, Patrice Abry, Béatrice Cuzine, Patrick
Loiseau, Christian Baude, Jean Frutoso, Claude Gharib, and Xavier Martin. Application of car-
diac autonomous indices in the study of neurogenic erectile dysfunction. Urologia Internationalis,
86(3):290–297, 2011.

[21] Patrick Loiseau, Paulo Gonçalves, Guillaume Dewaele, Pierre Borgnat, Patrice Abry, and Pascale
Vicat-Blanc Primet. Investigating self-similarity and heavy-tailed distributions on a large scale
experimental facility. IEEE/ACM Transactions on Networking, 18(4):1261–1274, August 2010.

[22] Edmundo Pereira de Souza Neto, Patrice Abry, Patrick Loiseau, Jean-Christophe Cejka, Marc-
Antoine Custaud, Jean Frutoso, Claude Gharib, and Patrick Flandrin. Empirical mode decompo-
sition to assess cardiovascular autonomic control in rats. Fundamental & Clinical Pharmacology,
21(5):481–496, October 2007.

Articles in refereed conferences

[23] Alberto Benegiamo, Patrick Loiseau, and Giovanni Neglia. Dissecting demand response mecha-
nisms: the role of consumption forecasts and personalized offers. In Proceedings of the American
Control Conference (ACC), July 2016.

[24] Xiaohu Wu and Patrick Loiseau. Algorithms for scheduling deadline-sensitive malleable tasks. In
Proceedings of the 53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), September 2015.
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[25] Oana Goga, Patrick Loiseau, Robin Sommer, Renata Teixeira, and Krishna Gummadi. On the
reliability of profile matching across large online social networks. In Proceedings of the 21st ACM
SIGKDD conference on Knowledge Discovery and Data Mining (KDD), August 2015.

[26] Hadrien Hours, Ernst Biersack, Patrick Loiseau, Alessandro Finamore, and Marco Mellia. A
study of the impact of DNS resolvers on performance using a causal approach. In Proceedings of
the 27th International Teletraffic Congress (ITC), September 2015. (Selected for submission of
an extended version to Computer Networks special issue on “Traffic and Performance in the Big
Data Era”).

[27] Michela Chessa, Jens Grossklags, and Patrick Loiseau. A game-theoretic study on non-monetary
incentives in data analytics projects with privacy implications. In Proceedings of the 28th IEEE
Computer Security Foundations Symposium (CSF), July 2015.

[28] Michela Chessa and Patrick Loiseau. The impact of the graph structure on a public good provision
game: a cooperative approach with applications to personal data release on social networks. In
SING11-GTM2015 (European meeting on game theory), July 2015. (1-page abstract).

[29] Michela Chessa, Jens Grossklags, and Patrick Loiseau. A short paper on the incentives to share
private information for population estimates. In Proceedings of the 19th International Conference
Financial Cryptography and Data Security (FC), January 2015. (Short paper).

[30] Galina Schwartz, Patrick Loiseau, and S. Shankar Sastry. The heterogeneous colonel blotto game.
In Proceedings of the International conference on network games, control and optimization (NETG-
COOP), October 2014.

[31] Stratis Ioannidis and Patrick Loiseau. Linear regression as a non-cooperative game. In Proceedings
of the 9th conference on Web and Internet Economics (WINE), December 2013.

[32] Lemonia Dritsoula, Patrick Loiseau, and John Musacchio. A game-theoretical approach for finding
optimal strategies in an intruder classification game. In Proceedings of the 51st IEEE Conference on
Decision and Control (CDC), December 2012.

[33] Lemonia Dritsoula, Patrick Loiseau, and John Musacchio. Computing the nash equilibria of
intruder classification games. In Proceedings of the third Conference on Decision and Game Theory
for Security (GameSec), November 2012. (Full paper).

[34] Patrick Loiseau, Galina Schwartz, John Musacchio, Saurabh Amin, and S. Shankar Sastry. Con-
gestion pricing using a raffle-based scheme. In Proceedings of the International conference on network
games, control and optimization (NETGCOOP), October 2011.

[35] Oana Goga, Patrick Loiseau, and Paulo Gonçalves. On the impact of the flow-size distribution’s tail
index on network performance with TCP connections. In Proceedings of the 29th International Sym-
posium on Computer Performance, Modeling, Measurements and Evaluation (IFIP Performance),
October 2011.

[36] Patrick Loiseau, Galina Schwartz, John Musacchio, and Saurabh Amin. Incentive schemes for
internet congestion management: Raffles versus time-of-day pricing. In 49th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton), September 2011.

[37] Patrick Loiseau, Paulo Gonçalves, Julien Barral, and Pascale Vicat-Blanc Primet. Modeling TCP
throughput: an elaborated large-deviations-based model and its empirical validation. In Proceed-
ings of the 28th International Symposium on Computer Performance, Modeling, Measurements and
Evaluation (IFIP Performance), November 2010. Best Paper Award Runner-up.

[38] Patrick Loiseau, Paulo Gonçalves, Stéphane Girard, Florence Forbes, and Pascale Vicat-
Blanc Primet. Maximum likelihood estimation of the flow size distribution tail index from sam-
pled packet data. In Proceedings of the eleventh international joint conference on Measurement and
modeling of computer systems (ACM SIGMETRICS / Performance), June 2009.
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[39] Patrick Loiseau, Paulo Gonçalves, Romaric Guillier, Matthieu Imbert, Yuetsu Kodama, and Pas-
cale Vicat-Blanc Primet. Metroflux: A high performance system for analyzing flow at very fine-grain.
In Proceedings of the 5th International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities (TridentCom), April 2009.

Articles in refereed workshops

[40] Hadrien Hours, Ernst Biersack, and Patrick Loiseau. Causal study of network performance. In
Proceedings of the 17ème Rencontres Francophones sur les Aspects Algorithmiques de Télécommu-
nications (AlgoTel), June 2014.

[41] Hadrien Hours, Ernst Biersack, and Patrick Loiseau. A causal study of an emulated network. In
10ème Atelier en Evaluation de Performances (AEP10), June 2014.

[42] Patrick Loiseau, Paulo Gonçalves, Romaric Guillier, Matthieu Imbert, Oana Goga, Yuetsu Ko-
dama, and Pascale Vicat-Blanc Primet. Metroflux : a high performance system for very fine-grain
flow analysis. In Grid’5000 Spring School, April 2009.

[43] Patrick Loiseau, Paulo Gonçalves, and Pascale Vicat-Blanc Primet. How TCP can kill self-
similarity. In Euro-NF workshop: Traffic Engineering and Dependability in the Network of the
Future, September 2008.

[44] Patrick Loiseau, Paulo Gonçalves, Yuetsu Kodama, and Pascale Vicat-Blanc Primet. Metroflux:
A fully operational high speed metrology platform. In Euro-NF workshop: New trends in modeling,
quantitative methods and measurements, in cooperation with NET-COOP, September 2008.

[45] Patrick Loiseau, Paulo Gonçalves, Guillaume Dewaele, Pierre Borgnat, Patrice Abry, and Pascale
Vicat-Blanc Primet. Vérification du lien entre auto-similarité et distributions à queues lourdes sur
un dispositif grande échelle. In 9ème Atelier en Evaluation de Performances (AEP9), June 2008.

[46] Patrick Loiseau, Paulo Gonçalves, and Pascale Vicat-Blanc Primet. A comparative study of
different heavy tail index estimators of the flow size from sampled data. In Proceedings of the
MetroGrid Workshop, within the framework of GridNets International Conference, October 2007.

Software Demonstrations

[47] Patrick Loiseau, Romaric Guillier, Oana Goga, Matthieu Imbert, Paulo Gonçalves, and Pascale
Vicat-Blanc Primet. Automated traffic measurements and analysis in Grid5000, June 2009. ACM
SIGMETRICS / Performance demonstration contest (Best Student Demonstration Award).

Invited talks
ENS Lyon (SIESTE seminar), Lyon, France October 2016
Learning from strategic data: a game-theoretic perspective

MPI-SWS, Saarbrucken, Germany April 2016
Classification from strategic data: a game-theoretic perspective

11ème Atelier en Evaluation de Performances (keynote), Toulouse, France March 2016
Strategic resource allocation in adversarial environments

Harvard University (EconCS seminar), Cambridge, MA, USA November 2015
Classification from strategic data: a game-theoretic perspective

MIT (Special Henry L. Pierce laboratory seminar), Cambridge, MA, USA November 2015
Classification from strategic data: a game-theoretic perspective
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Northeastern University (ECE department seminar), Boston, MA, USA November 2015
Classification from strategic data: a game-theoretic perspective

MIT Media Lab (Data Transparency Lab conference), Cambridge, MA, USA November 2015
Bringing Transparency to Targeted Advertising

LRI, Université Paris-Sud (Séminaire d’algorithmique et de complexité du plateau de Saclay), Saclay,
France October 2015
Learning to classify from strategic data

UCLA, IPAM Graduate Summer School: Games and Contracts for Cyber-Physical Security (invited
lecturer), Los Angeles, CA, USA July 2015
Learning with Strategic Agents: From Adversarial Learning to Game-Theoretic Statistics

Inria Grenoble (In’tech seminar), Grenoble, France June 2015
On the impact of game theory in security

ACM SIGMETRICS (invited tutorial), Portland, OR, USA June 2015
Learning with Strategic Agents: From Adversarial Learning to Game-Theoretic Statistics

LINCS (LINCS seminar), Paris, France March 2015
Game-theoretic statistics: Learning from data generated by strategic agents

Institut Henri Poincaré (Paris game theory seminar), Paris, France March 2015
Game-theoretic statistics: Learning from data generated by strategic agents

Data transparency lab (DTL) kickoff workshop, Telefonica, Barcelona, Spain November 2014
Game theory and statistics for data transparency: 3 directions

AlgoGT, Saint Nizier du Moucherotte, France July 2013
Classification games

Campus SophiaTech (SophiaTech networks seminar), Sophia-Antipolis, France April 2013
A Robust Incentive Mechanism for Congestion Management

Mines ParisTech (Séminaire du CMA), Sophia-Antipolis, France March 2013
Incentive Mechanisms for Decongestion: Fixed-Budget Rebate versus Time-of-Day Pricing

UC Berkeley (TRUST seminar), Berkeley, USA August 2012
Incentive mechanisms for congestion management

RESCOM summer school (guest lecture), Vittel, France June 2012
Game theory for network security and privacy

Supélec, Gif-sur-Yvette, France February 2012
Large games for Internet congestion management

INRIA Paris-Rocquencourt (RAP seminar), Le Chesnay, France February 2012
Large games for Internet congestion management

UCLA (EE department), Los Angeles, CA, USA October 2011
Raffle-based Incentive Schemes for Congestion Management

Caltech (RSRG Seminars), Pasadena, CA, USA October 2011
Raffle-based Incentive Schemes for Congestion Management

Orange Labs (France Telecom), Sophia-Antipolis, France March 2011
TCP traffic modeling using an almost-sure large-deviations result
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University of Nice, Laboratoire J.A. Dieudonné (Séminaire de Probabilités et Statistiques), Nice, France
Principe de grandes déviations presque-sur et applications March 2011

Alcatel-Lucent Bell Laboratories (Mathematics of Networks and Communications Research Department),
Murray Hill, NJ, USA March 2011
Almost-sure large deviations and application to TCP traffic

University of Waterloo (Department of Electrical and Computer Engineering invited seminar), Waterloo,
Canada
Large deviations and application to fine TCP modeling October 2010

UC Berkeley (Networking, Communications and DSP seminars), Berkeley, CA, USA September 2010
Large deviations and application to fine TCP modeling

Caltech (RSRG Seminars), Pasadena, CA, USA September 2010
Large deviations and application to fine TCP modeling

Politecnico di Torino (Telecommunication Network Group), Torino, Italy May 2010
Heavy-tails and correlations in network traffic

INRIA Paris-Rocquencourt (RAP seminar), Le Chesnay, France November 2009
Large deviations and application to TCP performance

Last updated: December 8, 2016
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