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Digital world opportunities and threats

§ The Internet brings many opportunities to build useful 
services
– Social medias, forums, daily apps (running, shopping, taxi), 

surveys, medical services, etc.

§ Based on personal data
– Exploited through machine learning 

§ But also important threats and issues 
– Security 
– Privacy 
– Reliability / performance
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My approach: methodology combining 
game theory and statistical learning

§ Security, privacy and performance are strongly 
impacted by strategic behavior of humans
– Need to take into account incentives

Ø Game theory: mathematical tool to model users 
interactions and incentives

§ Statistical learning: at the core of services based on 
personal data (privacy and security)

Ø Combination of game theory and statistical learning to 
design better digital systems
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Contributions areas and types

§ Development of models/methods/theoretical results 
combining game theory and statistical learning for…

1. Security

2. Privacy 

3. Networked systems

Theory çè Applications

§ Other works not covered in this HDR:
h Large deviations [Stoc. Proc. Appl. ’11]

h Heart-rate analysis [Physica A ’12]

h Resource provisioning [IEICE Trans on Com ’12], Internet cooperation [IJCS ’16]
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Roadmap

§ Game theory and statistical learning for 

– Security

– Privacy

– Networked systems

§ Perspectives
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Overview of security games

– Two players game modeling interaction attacker/defender
– Strategies (att, def) and utilities depend on the particular 

scenario at stake
hLearning algorithm for defense, defense resource allocation

è The game solution helps building better defenses
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Defender
chooses def

to maximize
UtilityDefender (def, att)

Attacker
chooses att

to maximize
UtilityAttacker (def, att)



Summary of my contributions in security

§ A game-theoretic study of adversarial classification
Key papers: [CDC ’12, GameSec ’12, ArXiv ’16]

Key collaborations: UC Santa Cruz
1 student unofficially advised

§ A new solution of the Blotto game (resource allocation)
Key papers: [Netgcoop ’14]

Key collaborations: UC Berkeley

§ Regret minimization in repeated games with discounted losses
Key papers: [StonyBrooks ’16/ArXiv ’16]

Key collaborations: UC Berkeley
1 intern
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Attack detection through classification

§ Need to differentiate attacks from normal behavior
– Spam detection, malware detection, fraud detection, etc.

§ Standard tools from supervised machine learning
– Logistic regression, SVM, Naive Bayes, etc.

§ In security: [dog=normal, cat=attack]
– Looking for best features, implementing/testing in real life
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Cats Dogs

Cat or dog?



Key limitation of supervised learning in 
security
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Class 0

Class 1

Classifier

v(0) ~ PN  given

v(1) ~ P(1)  given
Attacker (strategic)

Defender (strategic)

§ Standard learning algorithms based on “iid assumption”

§ Security: data generated by an adversary
è iid assumption fails, standard algorithms work poorly

è How to learn in these situations?
What can game-theory bring to this question?



Literature & contribution

§ Large literature on “adversarial learning”
[Dalvi et al. ’04], [Lowd, Meek ’05], [Globerson, Roweis ’06], [Huang, Biggio, Nelson, Laskov, Barreno, Joseph, 
Rubinstein, Tygar et al. ’08-’15], [Wang, Zhao et al. ’14], [Zhou, Kantarcioglu et al. ’12-’14], [Vorobeychik, Li ’14-
’15], …

Ø Simple, worst-case solutions
Ø Proposes randomization as defense but without justification

§ Large literature on game-theory for security
[Alpcan Basar, CUP 2011], [Alpcan, Basar, CDC ’04, Int Symp Dyn Games ’06], [Zhu et al., ACC ’10], [Liu et al, 
Valuetools ’06], [Chen, Leneutre, IEEE TIFS ’09], [Tambe et al. ’09-’15], …

Ø Simple payoff, no learning

§ Our work: 
Ø Flexible game-theoretic model of classification
Ø Game solution è insights on “how to learn”
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Model: players and actions
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Class 0

Class 1

Classifier
v ~ PN  given

chooses v

Non-attacker (noise)

Attacker (strategic)

Defender (strategic)
flags NA (0) or A (1)

p

1-p

§ Attacker chooses
§ Defender chooses

– Classifier 

§ Two-players game 

v ∈V Set of feature vectors

c ∈C

G = V,C,PN , p,cd,cfa

c :V→ {0,1}
Set of classifiers {0,1}V

Payoff-relevant
Parameters



Model: payoffs

§ Attacker’s payoff:

§ Defender’s payoff:
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UA (v,c) = R(v)− cd1c(v)=1
reward from attack

cost if detected

UD (v,c) = p −R(v)+ cd1c(v)=1( )+ (1− p)cfa PN ( "v )1c( "v )=1
"v ∈V
∑
%

&
'

(

)
*

cost of false alarm

UD (v,c) = −UA (c,v)+ (1− p)
p

cfa PN ( "v )1c( "v )=1
"v ∈V
∑
%

&
'

(

)
*

Rescaling



Nash equilibrium in the classification 
game

§ Mixed strategies: 
– Attacker: probability distribution 
– Defender: probability distribution 

§ Utilities extended: 

§ Nash equilibrium:              s.t. each player is at best-
response: 
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β  on C

(α*,β*)

α  on V

α* ∈ argmax
α

UA (α,β*)

β* ∈ argmax
β

UD (α*,β)

UA (α,β) = αvU
A (v,c)

c∈C
∑

v∈V
∑ βc



Best-response equivalence to a zero-
sum game

§ The non-zero-sum part depends only on 
§ Best-response equivalent to zero-sum game
Ø Solution can be computed by LP, BUT

Ø The size of the defender’s action set is large
Ø Gives no information on the game and solution structure
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UA (v,c) = R(v)− cd1c(v)=1

UD (v,c) = −R(v)+ cd1c(v)=1 +
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Main result 1: defender combines 
features based on attacker’s reward

§ Define      : set of threshold classifiers on

Ø Classifiers that compare         to a threshold are optimal 
for the defender
Ø Different from know classifiers (logistic regression, etc.)
Ø Reduces a lot the size of the defender’s strategy set
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CT = c ∈C : c(v) =1R(v)≥t ∀v, for some t ∈ℜ{ }
CT R(v)

Theorem:
For	every	NE	of																																									,	there	exists	a	NE	of

with	the	same	attacker’s	strategy	and	
the	same	equilibrium	payoffs

G = V,C,PN , p,cd,cfa
GT = V,CT ,PN , p,cd,cfa

R(v)



Main result 1: proof’s key steps

1. The utilities depend on      only through the probability 
of class 1 classification:

1. At NE, if                              , then

2. Any                                                   can be achieved 
by a mix of threshold strategies in 
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β

π d
β (v) = βc1c(v)=1

c∈C
∑

π d
β (v) increases with R(v)

PN (v)> 0 for all v

π d
β (v) that increases with R(v)

CT



Main result 2: Nash equilibrium structure
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Theorem:
At	a	NE	of																																															,	for some	k:

• The	attacker’s	strategy	is	

• The	defender’s	strategy	is	

where

GT = V,CT ,PN , p,cd,cfa

0,!, 0,αk,!,αV( )

0,!, 0,βk,!,βV ,βV +1( )  

βi =
ri+1 − ri
cd

,  for i ∈ k +1,!, V{ }                 ri = R(vi )< ri+1 = R(vi+1)( )

αi =
1− p
p

cfa
cd
PN (vi ),  for i ∈ k +1,!, V −1{ }



Nash equilibrium illustration
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Attack vectors

§ Case 
ri = i ⋅ca



NE computation

§ Defender: try all vectors     of the form (for all k)

§ Take the one maximizing payoff
– Unique maximizing à unique NE.
– Multiple maximizing     à any convex combination is a NE

§ Attacker: use the formula
– Complete first and last depending on 

b:
Mix of

defender
threshold
strategies

or
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βi =
ri+1 − ri
cd βi =

ri+1 − ri
cd

V R +1 V R +1V Rk +1 k

Complement to 1

β

β

β

β



Main result 2: proof’s key steps

1. Matrix formulation

2. At NE,     is solution of LP:

Ø extreme points of

3. Look at polyhedron
and eliminate points
that are not
extreme
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β
maximize  z - !µ β

s.t.             Λβ ≥ z ⋅1
V R , β ≥ 0, 1

V R +1
⋅β =1

Λx ≥1
V R , x ≥ 0 β = x x( )

cdx1 + (rVR − r1 +ε) x ≥1


cd (x1 + x2 ++ x

VR )+ε x ≥1

UA (α,β) = − "αΛβ   and  UD = "αΛβ − "µ β



Summary: binary classification from 
strategic data

§ Simple game model of classification from strategic data

§ Nash equilibrium brings insights on learning question: 
Ø Defender: combine features according to attacker’s reward

hMix on thresholds prop. to marginal reward, up to highest threshold
Ø Attacker: mimic non-attacker on defender’s support 
Ø Answer questions: “is it worth investing in extra sensors?”

§ Preliminary results for more complex scenarios
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Class 0

Class 1

Classifier

v ~ PN  given

chooses v

Non-attacker (noise)

Attacker (strategic)

Defender (strategic)
flags NA (0) or A (1)

p

1-p



Roadmap

§ Game theory and statistical learning for 

– Security

– Privacy

– Networked systems

§ Perspectives
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Overview of my research in privacy

§ Users revealing data are worried about privacy losses

1. Mechanisms to learn better from personal data while 
allowing users to reveal less data 
– A new game-theoretic model treating information as a public good

Key papers: [WINE ’13, FC ’15, CSF ’15, SING ’15/ArXiv ’16]
Key collaborations: Technicolor, Northeastern, PennState

1 postdoc

2. Estimation of privacy risk from data already public
– Matching user profiles across multiple sites

Key papers: [KDD ’15, ArXiv ’16]
Key collaborations: MPI-SWS

1 student
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How to learn from personal data?

§ Personal data is special:
– Privacy concerns, revealed by privacy-conscious human beings

Ø Large literature on incentives through payments

§ Users reveal data without being paid, because they have 
an interest in the learning result 
Ø Learning outcome (information) is a public good

Ø Personal data is strategic!
Ø How much can we learn? At which privacy cost? 
Ø Can we increase learning accuracy without payment?
Ø How to find optimal learning algorithm? 
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Model (1): linear model of user data
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1

n

i

yi = β
T xi +εi

yi = β
T xi +εi + zi

User i adds noise

Total noise of i
mean 0, variance σ 2 +σ i

2



Model (2): analyst’s learning
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1

n

i

β̂ = XTΛX( )
−1
XTΛ!y

inverse variance of y1

§ Generalized least-square estimator
– Unbiased, covariance
– Gauss-Markov/Aitken thm: smallest covariance amongst 

all linear unbiased estimators

V = XTΛX( )
−1



Model (3): utilities/cost functions

§ User i chooses precision of data revealed

– “contribution to result accuracy (public good)”

§ Minimize cost
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i
λi =

1
σ 2 +σ i

2 ∈ 0,1 /σ 2"# $%

Ji (λi,λ−i ) = ci (λi )+ f (λi,λ−i )

Privacy cost
Increasing convex

Estimation cost
f (λi,λ−i ) = F(V (λi,λ−i ))

F, hence f, increasing convex
Examples: F1(⋅) = trace(⋅), F2 (⋅) = ⋅

F

2
= trace(⋅2 )



Nash equilibrium results for the linear 
model

§ If <d users contribute, infinite estimation cost 
è trivial equilibria

§ Main equilibrium result

§ Proof: 
– Potential game
– Potential is convex

31

Theorem:
There	exists	a	unique	non-trivial	equilibrium

Φ(λi,λ−i ) = ci (λi )
i
∑ + f (λi,λ−i )



Equilibrium efficiency

§ Social cost: sum of cost of all users

§ Inefficiency of eq. measure by price of stability: 

§ Remarks: 
– Same as PoA if we remove the trivial equilibria
– PoS≥1, “large PoS: inefficient”, “small PoS: efficient”
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C(

λ) = ci (λi )

i
∑ + nf (


λ)

PoS = C(

λ NE )

C(

λ SO )



Efficiency results for the linear model

§ A first result:

– Obtained only from potential structure: by positivity of the 
estimation and privacy costs:

– Works for any estimation cost, i.e., any scalarization F
– But quite rough!
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Theorem:
The	PoS increases	at	most	linearly: PoS ≤ n.

1
n
C(

λ NE ) ≤Φ(


λ NE ) ≤Φ(


λ SO ) ≤C(


λ SO )



Efficiency results for the linear model (2)
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§ Monomial privacy costs:

– Worst case (linear cost): n1/2 for trace, n2/3 for Frobenius

ci (λi ) = ci ⋅λi
k, ci > 0,k ≥1

Theorem:	(monomial	costs)
If	the	estimation	cost	is ,	then

If	the	estimation	cost	is ,								then
F1(⋅) = trace(⋅) PoS ≤ n1/(k+1)

F2 (⋅) = ⋅
F

2 PoS ≤ n2/(k+2)

Theorem:	(general	costs)
With	 :	if																																		,	then		

With	 :									if																																		,	then	F2 (⋅) = ⋅
F

2

F1(⋅) = trace(⋅) nci!(λ) ≤ ci!(n
1/2λ) PoS ≤ n1/2

nci!(λ) ≤ ci!(n
1/3λ) PoS ≤ n2/3



Population average case

§ Case d=0:                     (      is the population average)

– Note: If                     , then                                     (slower than iid)
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yi = β0 +εi β0

Theorem	(monotonicity):
When	the	number	of	agent	increases,	at	equilibrium:	
- each	agent	gives	a	smaller	precision	(						decreases)
- the	estimator’s	precision	improves	(																	decreases)

λi
Var(β̂0 )

ci (λ) = λ
k

Theorem	(improved learning	accuracy):
For	a	well	chosen	η,	the	analyst	can	strictly	improve	the	estimator’s	
variance	by	restricting	the	users	precision	choice	to	{0}U[η,	1/σ2]	

Var(β̂0 ) ~ n
−1+2/(k+1)



Roadmap

§ Game theory and statistical learning for 

– Security

– Privacy

– Networked systems

§ Perspectives
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Overview of my contributions in 
networked systems

§ Causal analysis of network performance
– A new bootstrap inference algorithms and application to TCP, DNS

Key papers: [AlgoTel ’14, ITC ’15, TIST ’16, Comnet ’16]
1 student

§ Robust incentives for decongestion
– Lottery-based scheme robust to utility estimation errors
– Study of day-ahead pricing schemes in smart grids

Key papers: [Netgcoop ’12, Allerton ’12, ToN ’14, ACC ’16]
Key collaborations: UC Santa Cruz, UC Berkeley, Inria

1 student

§ Approximation algorithms for cloud resource allocation
Key papers: [Allerton ’15, TPDS maj. rev., ArXiv ’16]

1 student
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Roadmap

§ Game theory and statistical learning for 

– Security

– Privacy

– Networked systems

§ Perspectives: humans vs machine learning
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Learning from strategic data

§ How to learn from strategic data? (not iid)
è using solutions of game-theoretic models

§ Learning from personal data of privacy-conscious users
– Find algorithms that optimize learning accuracy at equilibrium

hIncomplete information
hNon-linear regression, recommendation

– A statistical learning theory for strategic data 
hRisk bounds, sample complexity

§ Learning from strategic data in security
– Incomplete information
– Dynamic models
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Human-friendly learning algorithms

§ Learning algorithms have a major impact on humans 
life…
– Online services, hiring, justice, etc.

§ …but we often can’t understand how they work

Ø Bringing transparency
– Collaborative transparency tool
– Definition of explanation

Ø Bringing fairness
– Designing algorithms under constraints of acceptability
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Professional activities & visibility

§ Teaching
– 3 courses / year: game theory, network 

economics, statistical data analysis

– Responsible networking track

§ Students supervision
– 5 PhD students (2 graduated)
– 1 postdoc (graduated)

– 5 interns (graduated)

§ Funding (total ~800k)
– Projects: IMT F&R, Labex UCN@Sophia, ANR 

Tremplin-ERC

– Industry: Symantec faculty gift, Data 
Transparency lab, Cifre SAP, Cifre Nokia

§ Sabbatical visits
– UC Berkeley, summer 2012

– MPI-SWS, summer 2014 and 2016-17

§ Awards
– Humbold Research Award 2016

§ Editorial activities
– Associate editor ACM TOIT

– Lead guest editor of 2 special issues

§ Steering committees
– Chair NetEcon SC

– Member SC Labex

§ Conference organization
– PC chair NetEcon ’12-’15
– Registration chair SIGMETRICS ’13, ’16

– Chair sophia-networking seminar

§ PhD committees and grant panels
– PhD reviewer and committee member
– Grant panel expert FRS Belgium, ARC Singapore

§ Keynotes and invited talks/lectures
– Keynote AEP ’16

– Invited lectures UCLA IPAM summer school, 
RESCOM summer school, SIGMETRICS tutorial

– Invited talks In’Tech, MIT, Harvard, Northeastern, 
Berkeley, IHP, AlgoGT, UCLA, Caltech, etc.
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Main achievements since PhD
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Oana, July 2016 Luca, November 2016



THANK YOU! QUESTIONS?
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