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Digital world opportunities and threats

= The Internet brings many opportunities to build useful
services

— Social medias, forums, daily apps (running, shopping, taxi),
surveys, medical services, etc.

= Based on personal data
— Exploited through machine learning

= But also important threats and issues
— Security
— Privacy
— Reliability / performance
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My approach: methodology combining
game theory and statistical learning

= Security, privacy and performance are strongly
impacted by strategic behavior of humans

— Need to take into account incentives

» Game theory: mathematical tool to model users
iInteractions and incentives

= Statistical learning: at the core of services based on
personal data (privacy and security)

» Combination of game theory and statistical learning to
design better digital systems
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Contributions areas and types

= Development of models/methods/theoretical results
combining game theory and statistical learning for...

1. Security
2. Privacy

3. Networked systems

Theory €=» Applications

= (Other works not covered in this HDR:

® Large deviations [Stoc. Proc. Appl. "11]
® Heart-rate analysis [Physica A '12]
® Resource provisioning [IEICE Trans on Com '12], Internet cooperation [1JCS '16]
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Roadmap

= (Game theory and statistical learning for

— Security
— Privacy

— Networked systems

= Perspectives
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Roadmap

= (Game theory and statistical learning for

— Security
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Overview of security games

Defender Attacker

chooses def chooses att

to maximize
Uﬁ//tyAttacker (def; att)

to maximize
Ut///tYDefender (def: aﬁ)

— Two players game modeling interaction attacker/defender

— Strategies (att, def) and utilities depend on the particular
scenario at stake

° Learning algoritnm for defense, defense resource allocation

= The game solution helps building better defenses
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Summary of my contributions in security

= A game-theoretic study of adversarial classification
Key papers: [CDC 12, GameSec '12, ArXiv '16]

Key collaborations: UC Santa Cruz
1 student unofficially advised

= A new solution of the Blotto game (resource allocation)

Key papers: [Netgcoop '14]
Key collaborations: UC Berkeley

= Regret minimization in repeated games with discounted |losses
Key papers: [StonyBrooks '16/ArXiv '16]

Key collaborations: UC Berkeley
1 intern
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Attack detection through classification

= Need to differentiate attacks from normal behavior
— Spam detection, malware detection, fraud detection, etc.

= Standard tools from supervised machine learning
— Logistic regression, SVM, Naive Bayes, etc.

Cat or dog?

= |n security: [dog=normal, cat=attack]
— Looking for best features, implementing/testing in real life

EURECOM
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Key limitation of supervised learning In
security

= Standard learning algorithms based on “iid assumption”

Defender (strategic)
A

2

Attacker (strategic) w

= Security: data generated by an adversary
= iid assumption fails, standard algorithms work poorly

>

p P~ PUsive

= How to learn in these situations?
What can game-theory bring to this question?
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Literature & contribution

= Large literature on “adversarial learning”

[Dalvi et al. '04], [Lowd, Meek '05], [Globerson, Roweis '06], [Huang, Biggio, Nelson, Laskov, Barreno, Joseph,
Rubinstein, Tygar et al. '08-"15], [Wang, Zhao et al. 14], [Zhou, Kantarcioglu et al. '12-’14], [Vorobeychik, Li '14-

"15], ...
» Simple, worst-case solutions
» Proposes randomization as defense but without justification

= Large literature on game-theory for security

[Alpcan Basar, CUP 2011], [Alpcan, Basar, CDC '04, Int Symp Dyn Games '06], [Zhu et al., ACC '10], [Liu et al,
Valuetools '06], [Chen, Leneutre, IEEE TIFS '09], [Tambe et al. '09-'15], ...

» Simple payoff, no learning

= Qur work:
» Flexible game-theoretic model of classification

» Game solution = insights on “how to learn”
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Model: players and actions

Non-attacker (noise) Defender (strategic)

flags NA (0) or A (1
T-p v™>L given J (O)orA(h)
)
p ic

= Attacker chooses Vv EI@——> Set of feature vectors

= Defender chooses ¢ E@—> Set of classifiers {0,1}|V|

— Classifier ¢:V —={0,1} s Payoff-relevant

] Parameters

o Two-players game G = <V, Ca'})Napvcd’Cfa\>
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Model: payoffs

= Attacker’s payoft:

U (v,c) =@

reward from attack

cost if detected
%

cost of false alarm

= Defender’s payoft: 7
U”(v,¢) = p(~-RW)+¢ 1, )+ (1= PYC,, E Py ("1
Rescaling 2
U () = UM (v + 8 ; P). ; ( D PN(V')IC(V,H)
V'EV
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Nash equilibrium in the classification
game

= Mixed strategies:

— Attacker: probability distribution o« on V
— Defender: probability distribution 8 on C

= Utilities extended:  U*(a.f)= Y, ¥ a,U*(v.0)B,

v&eV ceC

= Nash equilibrium: (', 8) s.t. each player is at best-

response. . P .
a €argmaxU”(a,p )

B €argmaxU”(a’, B)
B
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Best-response equivalence to a zero-
sum game

1_ /
U*(v,c)=R(v)=c,l ., - a-p) ol 2P )1c(v,)_1)
VeV
D _ (1 _ p) / 1
U (v,c)==-R(v)+c,1 ., + cha E POy
v'ev

= The non-zero-sum part depends onlyon c € C
= Best-response equivalent to zero-sum game
» Solution can be computed by LP, BUT

» The size of the defender’s action set is large
» Gives no information on the game and solution structure

EURECOM
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Main result 1: defender combines
features based on attacker’s reward

= Define C": set of threshold classifiers on R(v)
C' = {c EC:c(v)=1g,,, Vv, forsomerE fﬁ}

Theorem:

For every NE of G=(V,C,P,,p,c,,c. ), there exists a NE of
NoPsCysCy

G' = <V,CT,PN,p,cd,cfa>with the same attacker’s strategy and
the same equilibrium payoffs

» Classifiers that compare R(v) to a threshold are optimal
for the defender

» Different from know classifiers (logistic regression, etc.)
» Reduces a lot the size of the defender’s strategy set
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Main result 1: proof’s key steps

1. The utilities depend on B only through the probability
of class 1 classification:

”5 (v) = E ﬁclc(v)=l

ceC

1. AtNE, ifP,(v) >0 for all v, then
th (v) Increases with R(v)

2. Any Jrf (v) that increases with R(v) can be achieved
by a mix of threshold strategies in C’
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Main result 2: Nash equilibrium structure

Theorem:

AtaNEof G'= <V C',P,,p.c,,c fa> , for some k:

* The attacker’s strategy is (0,---,0,05k,"',05|v|)

 The defender’s strategy is (0,---,0,ﬁk,'“,/3|v|,/3|v|+1)

where

B ="l fori€ {k+1,V]} (=R <1,y =R(v,))

Cy

L A " P,(v,), fori € {k+1,--|v|-1}

l

P ¢
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Nash equilibrium illustration
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NE computation

= Defender: try all vectors g of the form (for all k)

La—h Complement to 1
= 7;'+1 - ’;
ﬂ: \\\ ﬁi=
Mix of €a

defender /

threshold

strategies H o0 '|_| |_| H 000

\v ‘+1 k VR\ \VR\+1

= Take the one maxim|zmg payoff

— Unique maximizing g = unique NE.
— Multiple maximizing g = any convex combination is a NE

= Attacker: use the formula
— Complete first and last depending on 8
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Main result 2: proof’s key steps

1. Matrix formulation U*(a,8)=-a'AB and U” =a'AB-u'p

2. At NE, B is solution of LP:
maximize z-u'f

s.t. Aﬁzz-l‘VR‘,[a’ZO,lvR‘H°[3’=1

> extreme points of Ax = 1\vR\’ x=0 (/3 = X/HXH)

3. Look at polyhedron  ¢,x, +(r‘VR‘ -n+e)|x| =1
and eliminate points
that are not

extreme c,(x +x, +°°'+X‘VR‘)+8||X|| > 1

oM
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Summary: binary classification from
strategic data

= Simple game model of classification from strategic data

Defender (strategic)
flags NA (0) or A (1)
5

Non-attacker (noise)
V™R given

= Nash equilibrium brings insights on learning question:

» Defender: combine features according to attacker’s reward
° Mix on thresholds prop. to marginal reward, up to highest threshold
» Attacker: mimic non-attacker on defender’s support

» Answer questions: “is it worth investing in extra sensors?”

= Preliminary results for more complex scenarios
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Roadmap

= (Game theory and statistical learning for

— Privacy
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Overview of my research in privacy

= Users revealing data are worried about privacy losses

1. Mechanisms to learn better from personal data while
allowing users to reveal less data

— A new game-theoretic model treating information as a public good

Key papers: [WINE *13, FC ’15, CSF ’15, SING "15/ArXiv '16]
Key collaborations: Technicolor, Northeastern, PennState
1 postdoc

2. Estimation of privacy risk from data already public
— Matching user profiles across multiple sites

Key papers: [KDD '15, ArXiv '16]
Key collaborations: MPI-SWS
1 student
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How to learn from personal data?

= Personal data is special:
— Privacy concerns, revealed by privacy-conscious human beings

» Large literature on incentives through payments

= Users reveal data without being paid, because they have
an interest in the learning result

» Learning outcome (information) is a public good

» Personal data is strategic!

» How much can we learn? At which privacy cost?
» Can we increase learning accuracy without payment?
» How to find optimal learning algorithm?
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Model (1): linear model of user data

> T
/yi B /5 xi + gl\
Private data of | Inherent noise of | ,
. ER mean O, variance O
i

Model parameterf| Public features of /
€ R’ E R’

(unknown)

<

User | SNOIS€  Added noise of |
mean O, variance Ol.z
~ T 7
/yi _ ﬁ 'xi +\8i +Z5
Y

Data reported by i fotalnoise ot/
ER mean O, variance O~ + O,
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Model (2): analyst’s learning

(nx1) vector of reported data
(nx d) matrix of public features

A . \ . inverse variance of y,
p=(x AX) X" Ay g
o~ |
weights A _

= (Generalized least-square estlmator

— Unbiased, covariance V = (XTAX)

— Gauss-Markov/Aitken thm: smallest covariance amongst
all linear unbiased estimators

>.6..>.@..>.@
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Model (3): utilities/cost functions

= User i chooses precision of data revealed
< A €l0,1/0]

o’ +0;

— “contribution to result accuracy (public good)”

= Minimize cost
J (A, A )=c(A)+ f(A,A)
/ \

Privacy cost Estimation cost
Increasing convex f(ALA)=FV(A,A.))

F, hence f, increasing convex
Examples: F,()=trace(), F,()=|| =trace()

a0 EURECOM



Nash equilibrium results for the linear
model

= |[f <d users contribute, infinite estimation cost
=>» trivial equilibria

= Main equilibrium result

There exists a unique non-trivial equilibrium

= Proof:
— Potential game DA A )= Eci()ti)+f()ti,)t_i)
— Potential is convex i
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Equilibrium efficiency

= Social cost: sum of cost of all users

C(A) =Y c.(A)+nf(A)

= |nefficiency of eq. measure by price of stability:

2 NE Social cost at the non-trivial
PoS = C()\' ) Nash equilibrium

7 SO
C()L ) <— Minimal social cost

= Remarks:

— Same as PoA if we remove the trivial equilibria
— PoS=>1, “large PoS: inefficient”, “small PoS: efficient”

o EURE

O

oM



Efficiency results for the linear model

= A first result:

The PoS increases at most linearly: PoS < n.

— Obtained only from potential structure: by positivity of the
estimation and privacy costs:

lC()INE) <PA"F) = D(A50) = C(A%0)
n

— Works for any estimation cost, i.e., any scalarization F
— But quite rough!
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Efficiency results for the linear model (2)

= Monomial privacy costs: ¢, (A)=c,"Af, ¢, >0,k=1

imati : 1/(k+1
If the estimation cost is F (-) = frace(*), then PoS =n (k+1)

2
o then PoS < n**+?

If the estimation cost is F,(:) = H

— Worst case (linear cost): n'2 for trace, n?3 for Frobenius

With F (-) =trace() : if nc;()t) < c;(nl/z)t), then PoS=<n"’
With F () = HH? if nc;(l) < c;(nm)t), then PoS <=n”"”
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Population average case

= Cased=0: y.=0,+¢ (B, isthe population average)

monotonicity

When the number of agent increases, at equilibrium:
- each agent gives a smaller precision (A, decreases)
- the estimator’s precision improves (Var(f,) decreases)

~ Note: If ¢,(A)= A", then Var(B,) ~n""*"“*"(slower than iid)

improved learning accuracy

For a well chosen n, the analyst can strictly improve the estimator’s
variance by restricting the users precision choice to {0}U[n, 1/0?]

. EURECOM



Roadmap

= (Game theory and statistical learning for

— Networked systems
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Overview of my contributions in
networked systems

= (Causal analysis of network performance
— A new bootstrap inference algorithms and application to TCP, DNS
Key papers: [AlgoTel '14, ITC ’15, TIST "16, Comnet '16]
1 student
= Robust incentives for decongestion

— Lottery-based scheme robust to utility estimation errors
— Study of day-ahead pricing schemes in smart grids

Key papers: [Netgcoop '12, Allerton ’12, ToN 14, ACC '16]
Key collaborations: UC Santa Cruz, UC Berkeley, Inria

1 student
= Approximation algorithms for cloud resource allocation

Key papers: [Allerton "15, TPDS maj. rev., ArXiv '16]
1 student
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Roadmap

= Perspectives: humans vs machine learning

EURE

O

oM

38



Learning from strategic data

= How to learn from strategic data” (not iid)
=» using solutions of game-theoretic models

= Learning from personal data of privacy-conscious users

— Find algorithms that optimize learning accuracy at equilibrium

° Incomplete information
° Non-linear regression, recommendation

— A statistical learning theory for strategic data
® Risk bounds, sample complexity

= Learning from strategic data in security

— Incomplete information
— Dynamic models
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Human-friendly learning algorithms

= | earning algorithms have a major impact on humans
life...

— Online services, hiring, justice, etc.

= ...but we often can’t understand how they work

» Bringing transparency

— Collaborative transparency tool
— Definition of explanation

» Bringing fairness
— Designing algorithms under constraints of acceptability
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Professional activities & visibility

Teaching

3 courses / year: game theory, network
economics, statistical data analysis

Responsible networking track

Students supervision

5 PhD students (2 graduated)
1 postdoc (graduated)

5 interns (graduated)

Funding (total ~800k)

Projects: IMT F&R, Labex UCN@Sophia, ANR
Tremplin-ERC

Industry: Symantec faculty gift, Data
Transparency lab, Cifre SAP, Cifre Nokia

Sabbatical visits

UC Berkeley, summer 2012
MPI-SWS, summer 2014 and 2016-17

Awards

Humbold Research Award 2016

Editorial activities

— Associate editor ACM TOIT

— Lead guest editor of 2 special issues

Steering committees

—  Chair NetEcon SC
—  Member SC Labex

Conference organization

—  PC chair NetEcon '12-'15
— Registration chair SIGMETRICS "13, 16

—  Chair sophia-networking seminar

PhD committees and grant panels

—  PhD reviewer and committee member

—  Grant panel expert FRS Belgium, ARC Singapore

Keynotes and invited talks/lectures

—  Keynote AEP ’16

— Invited lectures UCLA IPAM summer school,
RESCOM summer school, SIGMETRICS tutorial

— Invited talks In'Tech, MIT, Harvard, Northeastern,
Berkeley, IHP, AlgoGT, UCLA, Caltech, etc.
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Main achievements since PhD

Oana, July 2016 Luca, November 2016
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THANK YOU! QUESTIONS?

= o

rrrrrrrrrrrrr



