

Combining game theory and statistical learning for security, privacy and networked systems

Patrick Loiseau

HDR defense

EURECOM, December 2016

Digital world opportunities and threats

- The Internet brings many opportunities to build useful services
 - Social medias, forums, daily apps (running, shopping, taxi), surveys, medical services, etc.
- Based on personal data
 - Exploited through machine learning
- But also important threats and issues
 - Security
 - Privacy
 - Reliability / performance

My approach: methodology combining game theory and statistical learning

- Security, privacy and performance are strongly impacted by strategic behavior of humans
 - Need to take into account incentives
- Game theory: mathematical tool to model users interactions and incentives

 Statistical learning: at the core of services based on personal data (privacy and security)

Combination of game theory and statistical learning to design better digital systems

Contributions areas and types

- Development of models/methods/theoretical results combining game theory and statistical learning for...
 - 1. Security
 - 2. Privacy
 - 3. Networked systems

Theory ←→ Applications

- Other works not covered in this HDR:
 - Large deviations [Stoc. Proc. Appl. '11]
 - Heart-rate analysis [Physica A '12]
 - Resource provisioning [IEICE Trans on Com '12], Internet cooperation [IJCS '16]

Roadmap

- Game theory and statistical learning for
 - Security
 - Privacy
 - Networked systems

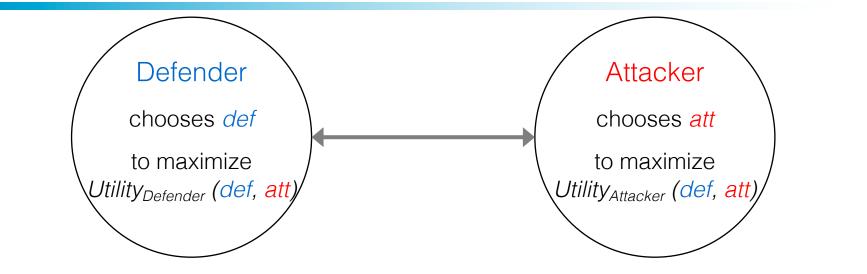
Perspectives

Roadmap

- Game theory and statistical learning for
 - Security
 - Privacy
 - Networked systems

Perspectives

Overview of security games



- Two players game modeling interaction attacker/defender
- Strategies (att, def) and utilities depend on the particular scenario at stake
 - Learning algorithm for defense, defense resource allocation
 - → The game solution helps building better defenses

Summary of my contributions in security

• A game-theoretic study of adversarial classification

Key papers: [CDC '12, GameSec '12, ArXiv '16] *Key collaborations*: UC Santa Cruz 1 student unofficially advised

A new solution of the Blotto game (resource allocation)

Key papers: [Netgcoop '14] *Key collaborations*: UC Berkeley

Regret minimization in repeated games with discounted losses

Key papers: [StonyBrooks '16/ArXiv '16] *Key collaborations*: UC Berkeley 1 intern

Summary of my contributions in security

A game-theoretic study of adversarial classification

Key papers: [CDC '12, GameSec '12, ArXiv '16] *Key collaborations*: UC Santa Cruz 1 student unofficially advised

A new solution of the Blotto game (resource allocation)

Key papers: [Netgcoop '14] *Key collaborations*: UC Berkeley

Regret minimization in repeated games with discounted losses

Key papers: [StonyBrooks '16/ArXiv '16] *Key collaborations*: UC Berkeley 1 intern

Attack detection through classification

- Need to differentiate attacks from normal behavior
 Spam detection, malware detection, fraud detection, etc.
- Standard tools from supervised machine learning
 Logistic regression, SVM, Naive Bayes, etc.

Dogs

Cat or dog?

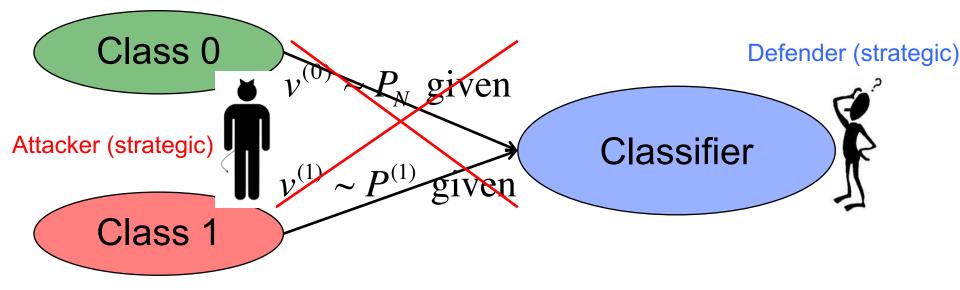
In security: [dog=normal, cat=attack]

VS

- Looking for best features, implementing/testing in real life

Key limitation of supervised learning in security

Standard learning algorithms based on "iid assumption"



Security: data generated by an adversary
 iid assumption fails, standard algorithms work poorly

→ How to learn in these situations? What can game-theory bring to this question?

Literature & contribution

Large literature on "adversarial learning"

[Dalvi et al. '04], [Lowd, Meek '05], [Globerson, Roweis '06], [Huang, Biggio, Nelson, Laskov, Barreno, Joseph, Rubinstein, Tygar et al. '08-'15], [Wang, Zhao et al. '14], [Zhou, Kantarcioglu et al. '12-'14], [Vorobeychik, Li '14-'15], ...

Simple, worst-case solutions

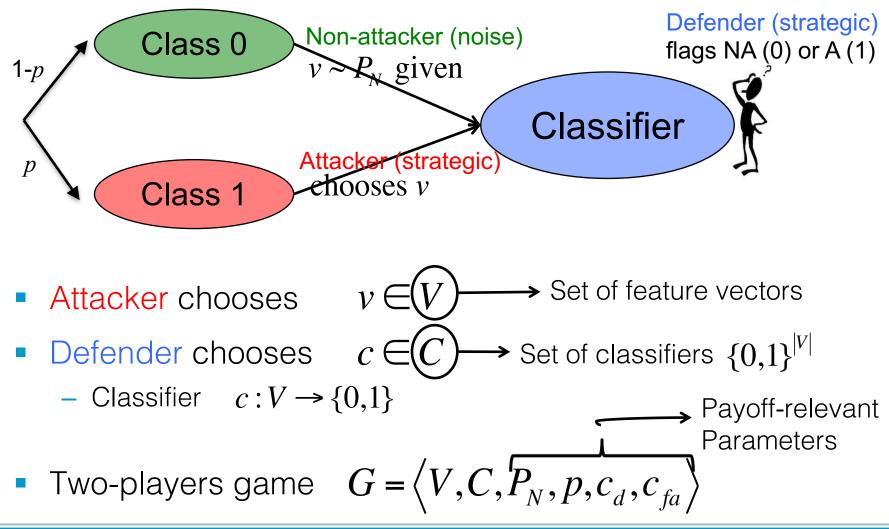
> Proposes randomization as defense but without justification

Large literature on game-theory for security

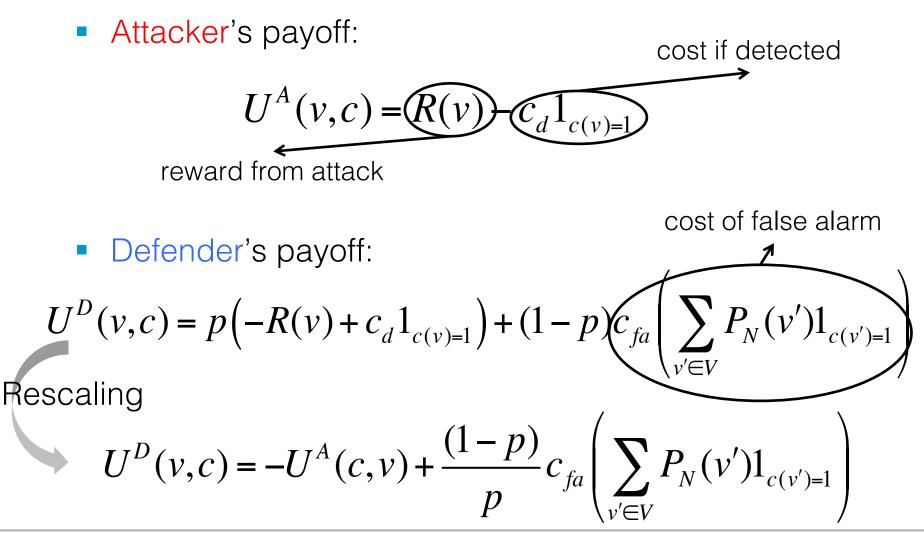
[Alpcan Basar, CUP 2011], [Alpcan, Basar, CDC '04, Int Symp Dyn Games '06], [Zhu et al., ACC '10], [Liu et al, Valuetools '06], [Chen, Leneutre, IEEE TIFS '09], [Tambe et al. '09-'15], ...

- Simple payoff, no learning
- Our work:
 - Flexible game-theoretic model of classification
 - \succ Game solution \rightarrow insights on "how to learn"

Model: players and actions



Model: payoffs



Nash equilibrium in the classification game

- Mixed strategies:
 - Attacker: probability distribution α on V
 - Defender: probability distribution β on C

• Utilities extended:
$$U^{A}(\alpha,\beta) = \sum_{v \in V} \sum_{c \in C} \alpha_{v} U^{A}(v,c) \beta_{c}$$

• Nash equilibrium: (α^*, β^*) s.t. each player is at best-response:

$$\alpha^* \in \operatorname*{argmax}_{\alpha} U^A(\alpha, \beta^*)$$
$$\beta^* \in \operatorname*{argmax}_{\beta} U^D(\alpha^*, \beta)$$

Best-response equivalence to a zerosum game

$$U^{A}(v,c) = R(v) - c_{d} 1_{c(v)=1} - \frac{(1-p)}{p} c_{fa} \left(\sum_{v' \in V} P_{N}(v') 1_{c(v')=1} \right)$$
$$U^{D}(v,c) = -R(v) + c_{d} 1_{c(v)=1} + \frac{(1-p)}{p} c_{fa} \left(\sum_{v' \in V} P_{N}(v') 1_{c(v')=1} \right)$$

- The non-zero-sum part depends only on $c \in C$
- Best-response equivalent to zero-sum game
- Solution can be computed by LP, BUT
 - The size of the defender's action set is large
 - Gives no information on the game and solution structure

Main result 1: defender combines features based on attacker's reward

• Define C^T : set of threshold classifiers on R(v)

$$C^{T} = \left\{ c \in C : c(v) = 1_{R(v) \ge t} \forall v, \text{ for some } t \in \Re \right\}$$

Theorem:

For every NE of $G = \langle V, C, P_N, p, c_d, c_{fa} \rangle$, there exists a NE of $G^T = \langle V, C^T, P_N, p, c_d, c_{fa} \rangle$ with the same attacker's strategy and the same equilibrium payoffs

- > Classifiers that compare R(v) to a threshold are optimal for the defender
 - Different from know classifiers (logistic regression, etc.)
 - \succ Reduces a lot the size of the defender's strategy set

Main result 1: proof's key steps

1. The utilities depend on β only through the probability of class 1 classification:

$$\pi_d^\beta(v) = \sum_{c \in C} \beta_c \mathbf{1}_{c(v)=1}$$

- 1. At NE, if $P_N(v) > 0$ for all v, then $\pi_d^{\beta}(v)$ increases with R(v)
- 2. Any $\pi_d^{\beta}(v)$ that increases with R(v) can be achieved by a mix of threshold strategies in C^T

Main result 2: Nash equilibrium structure

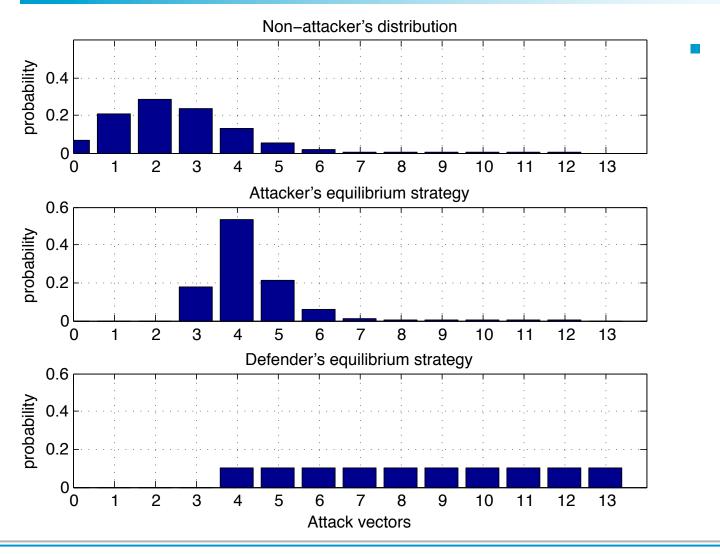
Theorem:

At a NE of
$$G^T = \langle V, C^T, P_N, p, c_d, c_{fa} \rangle$$
, for some k:

- The attacker's strategy is $(0, \dots, 0, \alpha_k, \dots, \alpha_{|V|})$
- The defender's strategy is $\left(0, \cdots, 0, \beta_k, \cdots, \beta_{|V|}, \beta_{|V|+1}\right)$

where
$$\beta_i = \frac{r_{i+1} - r_i}{c_d}$$
, for $i \in \{k+1, \dots, |V|\}$ $(r_i = R(v_i) < r_{i+1} = R(v_{i+1}))$
 $\alpha_i = \frac{1 - p}{p} \frac{c_{fa}}{c_d} P_N(v_i)$, for $i \in \{k+1, \dots, |V| - 1\}$

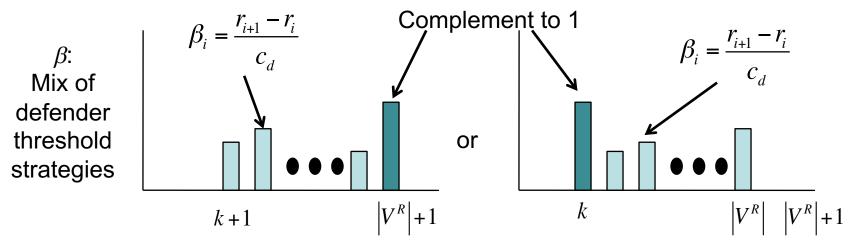
Nash equilibrium illustration



Case $r_i = i \cdot c_a$

NE computation

• Defender: try all vectors β of the form (for all k)



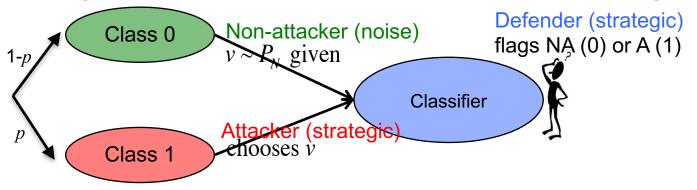
- Take the one maximizing payoff
 - Unique maximizing $\beta \rightarrow$ unique NE.
 - Multiple maximizing $\beta \rightarrow$ any convex combination is a NE
- Attacker: use the formula
 - Complete first and last depending on β

Main result 2: proof's key steps

- 1. Matrix formulation $U^{A}(\alpha,\beta) = -\alpha'\Lambda\beta$ and $U^{D} = \alpha'\Lambda\beta \mu'\beta$
- 2. At NE, β is solution of LP: maximize $z - \mu'\beta$ s.t. $\Lambda\beta \ge z \cdot 1_{|V^R|}, \beta \ge 0, 1_{|V^R|+1} \cdot \beta = 1$ > extreme points of $\Lambda x \ge 1_{|V^R|}, x \ge 0$ $(\beta = x/||x||)$
- 3. Look at polyhedron and eliminate points that are not extreme $c_d x_1 + (r_{|V^R|} - r_1 + \varepsilon) ||x|| \ge 1$ \vdots $c_d (x_1 + x_2 + \dots + x_{|V^R|}) + \varepsilon ||x|| \ge 1$

Summary: binary classification from strategic data

Simple game model of classification from strategic data



- Nash equilibrium brings insights on learning question:
 - Defender: combine features according to attacker's reward
 - Mix on thresholds prop. to marginal reward, up to highest threshold
 - > Attacker: mimic non-attacker on defender's support
 - Answer questions: "is it worth investing in extra sensors?"
- Preliminary results for more complex scenarios

Roadmap

- Game theory and statistical learning for
 - Security
 - Privacy
 - Networked systems

Perspectives

Overview of my research in privacy

- Users revealing data are worried about privacy losses
- 1. Mechanisms to learn better from personal data while allowing users to reveal less data
 - A new game-theoretic model treating information as a public good

Key papers: [WINE '13, FC '15, CSF '15, SING '15/ArXiv '16] *Key collaborations*: Technicolor, Northeastern, PennState 1 postdoc

- 2. Estimation of privacy risk from data already public
 - Matching user profiles across multiple sites

Key papers: [KDD '15, ArXiv '16] *Key collaborations*: MPI-SWS 1 student

Overview of my research in privacy

- Users revealing data are worried about privacy losses
- 1. Mechanisms to learn better from personal data while allowing users to reveal less data
 - A new game-theoretic model treating information as a public good

Key papers: [WINE '13, FC '15, CSF '15, SING '15/ArXiv '16] *Key collaborations*: Technicolor, Northeastern, PennState 1 postdoc

- 2. Estimation of privacy risk from data already public
 - Matching user profiles across multiple sites

Key papers: [KDD '15, ArXiv '16] *Key collaborations*: MPI-SWS 1 student

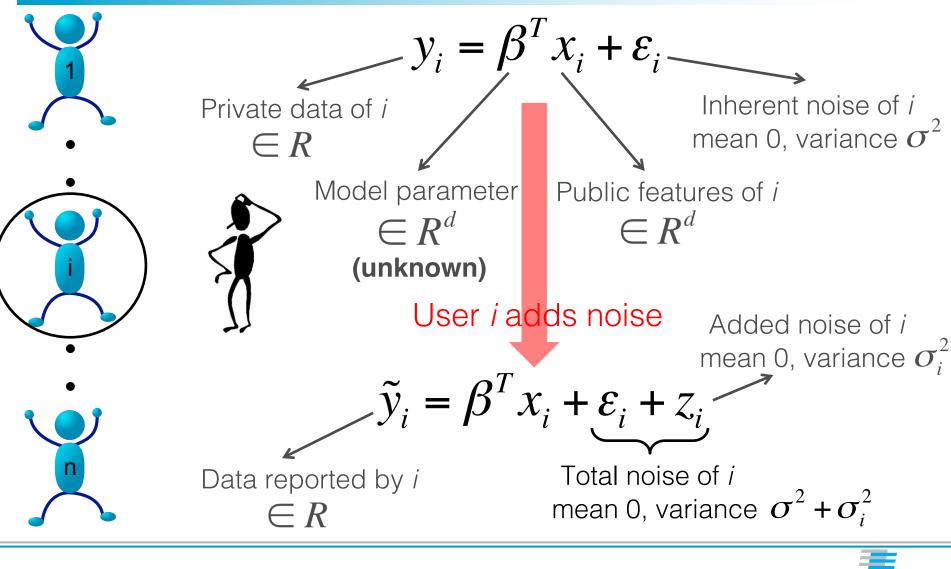
How to learn from personal data?

- Personal data is special:
 - Privacy concerns, revealed by privacy-conscious human beings
- Large literature on incentives through payments
- Users reveal data without being paid, because they have an interest in the learning result

Learning outcome (information) is a public good

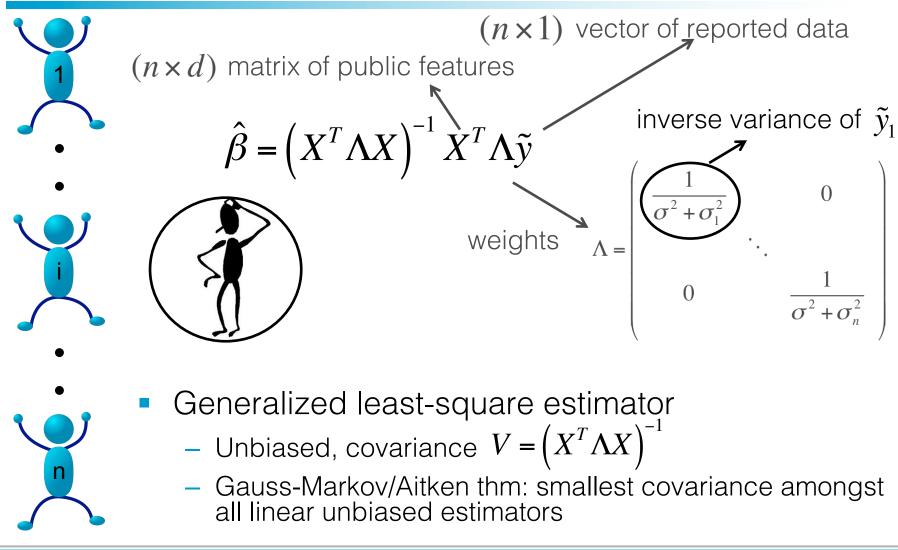
- > Personal data is strategic!
 - > How much can we learn? At which privacy cost?
 - > Can we increase learning accuracy without payment?
 - How to find optimal learning algorithm?

Model (1): linear model of user data

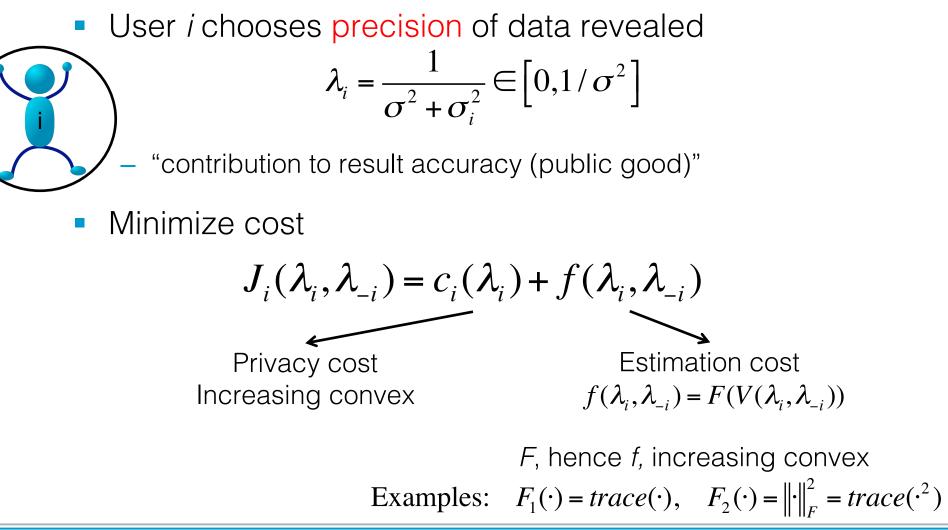


EURECOM

Model (2): analyst's learning



Model (3): utilities/cost functions



Nash equilibrium results for the linear model

- If <*d* users contribute, infinite estimation cost
 Trivial equilibria
- Main equilibrium result

Theorem:

There exists a unique non-trivial equilibrium

- Proof:
 - Potential game

$$\Phi(\lambda_i, \lambda_{-i}) = \sum_i c_i(\lambda_i) + f(\lambda_i, \lambda_{-i})$$

Equilibrium efficiency

Social cost: sum of cost of all users

$$C(\vec{\lambda}) = \sum_{i} c_{i}(\lambda_{i}) + nf(\vec{\lambda})$$

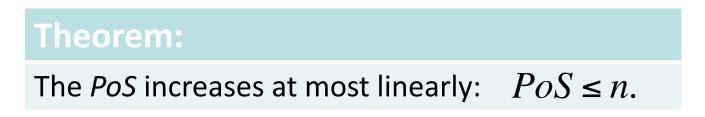
Inefficiency of eq. measure by price of stability:

$$PoS = \frac{C(\vec{\lambda}^{NE})}{C(\vec{\lambda}^{SO})} \longleftarrow$$
 Social cost at the non-trivial Nash equilibrium Minimal social cost

- Remarks:
 - Same as PoA if we remove the trivial equilibria
 - PoS≥1, "large PoS: inefficient", "small PoS: efficient"

Efficiency results for the linear model

• A first result:



Obtained only from potential structure: by positivity of the estimation and privacy costs:

$$\frac{1}{n}C(\vec{\lambda}^{NE}) \le \Phi(\vec{\lambda}^{NE}) \le \Phi(\vec{\lambda}^{SO}) \le C(\vec{\lambda}^{SO})$$

- Works for any estimation cost, i.e., any scalarization F
- But quite rough!

Efficiency results for the linear model (2)

• Monomial privacy costs: $c_i(\lambda_i) = c_i \cdot \lambda_i^k, \ c_i > 0, k \ge 1$

Theorem: (monomial costs)

If the estimation cost is $F_1(\cdot) = trace(\cdot)$, then $PoS \le n^{1/(k+1)}$ If the estimation cost is $F_2(\cdot) = \left\| \cdot \right\|_{F'}^2$ then $PoS \le n^{2/(k+2)}$

- Worst case (linear cost): n^{1/2} for trace, n^{2/3} for Frobenius

Theorem: (general costs)

With
$$F_1(\cdot) = trace(\cdot)$$
: if $nc'_i(\lambda) \le c'_i(n^{1/2}\lambda)$, then $PoS \le n^{1/2}$
With $F_2(\cdot) = \left\|\cdot\right\|_F^2$: if $nc'_i(\lambda) \le c'_i(n^{1/3}\lambda)$, then $PoS \le n^{2/3}$

Population average case

• Case d=0:
$$y_i = \beta_0 + \varepsilon_i$$
 (β_0 is the population average)

Theorem (monotonicity):

When the number of agent increases, at equilibrium:

- each agent gives a smaller precision (λ_i decreases)
- the estimator's precision improves ($Var(\hat{\beta}_0)$ decreases)

- Note: If
$$c_i(\lambda) = \lambda^k$$
, then $Var(\hat{\beta}_0) \sim n^{-1+2/(k+1)}$ (slower than iid)

Theorem (improved learning accuracy):

For a well chosen η , the analyst can strictly improve the estimator's variance by restricting the users precision choice to $\{0\}U[\eta, 1/\sigma^2]$

Roadmap

- Game theory and statistical learning for
 - Security
 - Privacy
 - Networked systems

Perspectives

Overview of my contributions in networked systems

- Causal analysis of network performance
 - A new bootstrap inference algorithms and application to TCP, DNS

Key papers: [AlgoTel '14, ITC '15, TIST '16, Comnet '16] 1 student

- Robust incentives for decongestion
 - Lottery-based scheme robust to utility estimation errors
 - Study of day-ahead pricing schemes in smart grids

Key papers: [Netgcoop '12, Allerton '12, ToN '14, ACC '16] *Key collaborations*: UC Santa Cruz, UC Berkeley, Inria 1 student

Approximation algorithms for cloud resource allocation

Key papers: [Allerton '15, TPDS maj. rev., ArXiv '16] 1 student

Roadmap

- Game theory and statistical learning for
 - Security
 - Privacy
 - Networked systems

Perspectives: humans vs machine learning

Learning from strategic data

- How to learn from strategic data? (not iid)
 Jusing solutions of game-theoretic models
- Learning from personal data of privacy-conscious users
 - Find algorithms that optimize learning accuracy at equilibrium
 - Incomplete information
 - Non-linear regression, recommendation
 - A statistical learning theory for strategic data
 - Risk bounds, sample complexity
- Learning from strategic data in security
 - Incomplete information
 - Dynamic models

Human-friendly learning algorithms

- Learning algorithms have a major impact on humans life...
 - Online services, hiring, justice, etc.
- ...but we often can't understand how they work
- Bringing transparency
 - Collaborative transparency tool
 - Definition of explanation
- > Bringing fairness
 - Designing algorithms under constraints of acceptability

Professional activities & visibility

- Teaching
 - 3 courses / year: game theory, network economics, statistical data analysis
 - Responsible networking track
- Students supervision
 - 5 PhD students (2 graduated)
 - 1 postdoc (graduated)
 - 5 interns (graduated)
- Funding (total ~800k)
 - Projects: IMT F&R, Labex UCN@Sophia, ANR Tremplin-ERC
 - Industry: Symantec faculty gift, Data Transparency lab, Cifre SAP, Cifre Nokia
- Sabbatical visits
 - UC Berkeley, summer 2012
 - MPI-SWS, summer 2014 and 2016-17
- Awards
 - Humbold Research Award 2016

- Editorial activities
 - Associate editor ACM TOIT
 - Lead guest editor of 2 special issues
- Steering committees
 - Chair NetEcon SC
 - Member SC Labex
- Conference organization
 - PC chair NetEcon '12-'15
 - Registration chair SIGMETRICS '13, '16
 - Chair sophia-networking seminar
- PhD committees and grant panels
 - PhD reviewer and committee member
 - Grant panel expert FRS Belgium, ARC Singapore
- Keynotes and invited talks/lectures
 - Keynote AEP '16
 - Invited lectures UCLA IPAM summer school, RESCOM summer school, SIGMETRICS tutorial
 - Invited talks In'Tech, MIT, Harvard, Northeastern, Berkeley, IHP, AlgoGT, UCLA, Caltech, etc.

Main achievements since PhD

Oana, July 2016

Luca, November 2016

THANK YOU! QUESTIONS?

