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Abstract—Researches in network traffic analysis embrace a
large diversity of goals and are based on a variety of methodolo-
gies and tools. To have a better insight on the real nature and on
the evolution of network traffic we argue that fine-grain analysis
of real traffic traces have to complement simulations studies as
well as coarse grain measurement performed by classical flow
measurement systems. In particular, packet level measurements
and analysis are needed. However, such methodologies are
resource consuming and require very high performance devices
to be operational in real high speed networks. In this paper we
present the Metroflux system which aims at providing researchers
and network operators with a very flexible and accurate packet-
level traffic analysis toolkit configured for 1 Gbps and 10 Gbps
speed links. This system is based on the GtrcNet FPGA-based
device technology and on specific statistical analysis tools. We
show the potential and the facilities offered by the Metroflux
system coupled with the Grid5000 large scale experimental
platform and the Network eXperiment Engine (NVXE) we have
developed. We illustrate the application of the Metroflux system
with the practical validation of the theoretical prediction relating
self-similarity and heavy tails given by Taqqu theorem. We also
illustrate several usages of this toolset, such as the investigation
of conditions under which several traffic theories apply, as well
as studies on traffic, protocols and systems interactions.

1. MOTIVATION

Researches in network traffic analysis aim a large diversity
of goals and are based on a variety of methodologies and tools.
The experimental environments generally used by researchers
are simulators, emulators or production platforms. However,
these tools present limitations making some studies difficult
and results partial. Simulators focus on a specific behavior or
mechanism of the network and abstract the rest of the system.
A main restriction of simulators is then the difficulty of their
validation and their scale limitation. For example, in an event-
driven network simulator, the network is an abstraction and
the number of traffic sources or bitrates you can simulate
depends on the computing power of the machine executing
the simulator. When it becomes difficult to capture and extract
the factors influencing the protocols, emulators can help by
executing the actual software, in its whole complexity, on a
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fully controlled platform. As a consequence, there is still a
gap between emulators and the reality: they cannot capture
all the dynamic, variety and complexity of real life conditions
and of real equipments. That is why current Internet links are
generally used to observe and analyze the real traffic as it is.
The Internet (through projects like PlanetLab, RON...) is also
considered as a good candidate for running traffic metrology
experiments because it exposes them to realistic conditions. To
have a better insight on the real nature and on the evolution of
network traffic on these links we claim that fine grain analysis
of real traffic have to complement coarse grain measurement
performed by classical flow measurement systems. That is
notably the case for scaling laws identification in traffic time
series. To assess statistical invariance over significantly wide
scale ranges, instantaneous throughputs necessarily need to be
scrutinized at different aggregation resolutions: from packets
inter-arrival time scales up to characteristic coarse scales
related to the applications. Furthermore, different scaling prop-
erties holding for different observation scales, convey distinct
information about the network. Conversely, their influence on
the system performances primarily affect mechanisms sensible
to the same time scales. For instance, long range dependence
(LRD) due to the specific nature of flow size distributions
implies time scales that lie beyond the mean flows duration
which generally exceeds the buffer’s size. As a result, the
buffers’ load (and the overflows thereof) is more likely to
depend on the burstiness of the traffic at fine scales (defined
by the RTTs) rather than on the LRD itself. This simple
example prompts the need for packet level measurements and
analyses. However, such a methodology is resource consuming
and requires very high performance devices to be operational
in real high speed networks. Indeed emerging experimental
research works, exploring for example Future Internet ap-
plications based on Data Center and resource sharing are
based on very high speed links (10 Gbps). Performing realistic
experiments, in order to relevantly characterize the network
traffic generated by these applications then requires to solve
the challenging issue of monitoring very high speed links at a
fine grain (packet level).

On the other hand, while real production link traffic analysis
remains a central problem, we also need to perform fully
controlled and reproducible experiments which allows the user
to vary a lot of parameters (aggregation level, congestion,
source flow size distribution, etc.); and then study separately
their impact on the traffic. The large scale Grid5000 instrument



providing up to 5000 fully reservable and reconfigurable cores
combined with the Metroflux system offers such reproducible
environment.

In this paper, we present Metroflux, a fully operational
metrology platform, based on the GtrcNet-1 and GtrcNET-10
hardware, which enables to capture the traffic at packet level
on a very high speed link and to analyze it at packet and flow
level. The Metroflux system aims at providing researchers and
network operators with a very flexible and accurate packet-
level traffic analysis toolkit configured for 1 Gbps and 10 Gbps
links. This system is based on the GtrcNet FPGA-based device
technology and original statistical analysis tools. We then
present its utilization in two different situations: a controlled
experiment on Grid5000 and the monitoring of a production
link. Firstly, we illustrate the application of the Metroflux
system with the experimental validation of the theoretical pre-
diction relating self-similarity and heavy tails given by Taqqu
theorem. We also show how the potential and facilities offered
by the Grid5000 instrument and Metroflux system enable to
investigate the conditions under which several traffic theories
apply as well as to better understand how traffic, protocols and
systems interplay. The paper is organised as follows. Section II
presents the general design of our plateform. In Section III two
use cases are detailed to illustrate the potential of Metroflux
system. Related works are reviewed in Section I'V. Finally, we
conclude in Section V.

II. GENERAL DESIGN OF THE Metroflux SYSTEM
A. Global architecture of the system

Metroflux is a programmable system for flow analysis which
currently operates on a 1 Gbps link without loss, and which
is in a validation phase for 10 Gbps links. As described in
figure 1, this system is composed of hardware elements and
software components. The Metroflux system integrates the
GtrcNet-1 box [1] or the GtrcNet-10 box [2] (for 10 Gbps
links) and a storage server with large amount of disk space.
The system is able to capture the first 52 bytes (for GtreNET-
1) or 56 bytes (for GtrcNET-10) of every packets (i.e. the
header and few payload bytes), group them and send them to
a capture server. The capture server runs a MAPI (Monitoring
API [3], developed by the LOBSTER project [4]) daemon
with a special GtrcNET driver, and is able to save the packet
headers’ stream into a pcap file for offline analysis. The pcap
format has been choosen because it is also used by tcpdump
and it saves packets with their capturing timestamp. The
data analysis server runs a packet header extracting program,
which is based on the MAPI library which provides advanced
functions to manipulate packet headers in pcap format. The
duration of a capture session depends on the packet size and
the throughput of the link. It can encompass several hours in
low load conditions.

The Metroflux system can be installed transparently within
an experimental or a production network in two different ways
(see Figure 2):

o incorporated in a 1 Gbps links (between source(s) and
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Fig. 2. Two different ways of installing Metroflux on a link

o plugged into a mirrored port of a switch.

If the Metroflux system is inserted in the data path, other
GtreNET functions such as latency emulation or aggregated
throughput on-line measurement can be activated.

In next Section, we develop the specificities of the GtrcNET-
10.

B. GtrcNET-10 characteristics for 10 Gbps links measurement

GtrcNET-10 [2] is a hardware layer 2 network equipment
with 10 GbE ports, and it is a successor of GtreNET-1 [1]
with GbE ports. GtrcNET-10 provides many parametrable
functions, such as traffic monitoring in microsecond resolution,
traffic shaping, and WAN emulation at 10 Gbps wire speed. A
remote computer can set several parameters, such as interval
of traffic bandwidth monitoring, target bandwidth of traffic
shaping, and delay of network emulation. It gets results of
bandwidth monitoring. In the Metroflux system, GtrcNET-10
is used and configured to capture headers of packets. GtreNET-
10 consists of a large-scale Field Programmable Gate Array
(FPGA), three 10 Gbps Ethernet XENPAK ports, and three
blocks of 1 GB DDR-SDRAM. Figure 3 shows the architecture
of GtrcNET-10. The FPGA is a Xilinx XC2VP100, which
includes three 10 Gbps Ethernet MAC and XAUI interfaces.
The FPGA can directly receive the 3.125 GHz signals from
XENPAK module by Rocket I/O hardware macro. The main
circuit in FPGA runs on 156.25 MHz clock with 64 bit data
width, and the memory is accessed by 162 MHz to support
read and write with wire rate speed of 10 GbE. GtrcNET-10
is connected to a control PC via USB. It also has a serial
port to connect GPS module, and it can synchronize the time
with other GtrcNET by receiving accurate time from GPS.
The MICTOR connector is used for debugging in the circuit of
FPGA. System ACE initializes the FPGA by the configuration
data on Compact Flush memory.

By programming the FPGA, one can add new functions
and improve existing functions according to the requirements
of the users.

Let us now detail packet capture functions of GtrcNET-10
with two examples.

Figure 4 (a) shows an example of usage for packet capture
on GtrcNET-10. The traffic to be captured is transferred
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between ports CHO and CHI1. GtrcNET-10 selects an input
port, duplicates packets from the port, and captures them
into a memory. This function cannot capture bi-directional
traffic. The traffic transfered between ports CHO and CH1 is
not affected by the capture. A filtering condition is defined
so that packets are captured only if they satisfy the filtering
conditions. A condition indicates a 16 bit field of the header,
selects any bits by 16 bit mask, and compares it with the
specified 16 bit value. One or two conditions can be specified,
and the logical combination of two conditions (logical-and or
logical-or) can also be specified. For example, one can capture
only packets whose source port or destination port of TCP/IP
header coincides with a specified value. One can also capture
only packets that have VLAN tag, the VLAN ID being a
specified value. The captured data are sent to a control PC via
USB. Since the USB access speed of current implementation is
only 100 Kbytes/sec, the capture size is limited to the memory
size, which is 1 Gbytes. If all the packets of a wire rate traffic
at a 10 GbE link are captured, only 800 ms of traffic can be
captured.

Figure 4 (b) shows another example of usage for packet
capture on GtrcNET-10. The traffic to be captured is mirrored
by a network switch, and the mirrored traffic is transferred
to GtrcNET-10. GtrcNET-10 can capture only selected header
fields of the packets into a memory. The header fields to be
captured are in 16 bytes unit long, and any field can be selected
independently up to 128 bytes. The received timestamp is a
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Fig. 5. Packet format of capture forward

64 bit field whose format is based on RFC-1305 [5] and it
constitutes the first 8 bytes of the captured header fields for
each packet. Multiple captured headers are encapsulated into
a UDP packet, and transferred from an output port. Figure 5
shows the format of the UDP packet, which includes ten 80
bytes of captured data. The first block is a scheduled time
for transmission. This field is only used inside of GtrcNET-
10, and is not transmitted. The next three blocks are Ethernet,
IP, and UDP headers respectively. The fifth block is a header
of the forward packet that includes captured header size (hd),
number of captured headers (num), sequence number of packet
(seq), and its transmit timestamp (txTimestamp). Captured data
follow the headers. If the one-way wire rate traffic of a 10 GbE
link with 1500 bytes IP packet is captured using the format in
Figure 5, the capture forward traffic rate is about 556 Mbps.
The forward traffic should be read by a receiving node. If the
traffic is too large to be read by single node, the destination
of the forward traffic can be distributed to multiple nodes in
round-robin, up to 16 nodes.

By mixing received and transmitted traffic in the mirrored
traffic, bi-directional traffic can be captured in a port, but the
mirrored traffic is limited to 10 Gbps. Since a GtrcNET-10 can
capture mirrored packets from three ports simultaneously, bi-
directional traffic of wire rate can be captured by mirroring
received and transmitted traffic independently. Notice that
some switches cannot receive packets from the mirroring port.
Since GtrcNET-10 can transmit capture forward packet from
any port, it solves the problem, but the solution requires two
ports of GtrcNET-10 for packet capturing of one port.

GtrcNET-10 can capture packets in any combination, such
as duplicating packets or not, filtering packets or not, selecting
header fields or not, accessing by USB or forwarding as
packets, but capture forwarding is only for selected headers.

In the Metroflux system, GtrcNET-10 is used with a server
which stores the packet headers’ stream and perform off-line
fine grain traffic analysis.
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C. Integration of Metroflux in a controlled environment

The Metroflux system has been adapted to instrument the
fully controlled environment Grid5000. In addition, an original
and extensible tool to design a traffic analysis experiment and
to automatically deploy it has been written [6].

Traditional production networks hardly support traffic analy-
sis experimentation for studying the relationship between traf-
fic patterns, aggregate characteristics and protocols. Indeed, re-
producing the experimental conditions several times is almost
impossible in shared and uncontrolled networks. Moreover,
such experiments require a large scale deployment of end-
host protocols and mechanisms. These software (or kernel
modules) like rate limitation, QoS mechanisms, congestion
control variants should be implemented within the operating
system of communicating nodes. The experiments require
the installation of experimental hardware and traffic capture
elements in a representative traffic aggregation point. This type
of experiments is difficult to run in production environments.
Other experiment classes are concerned by such limitations,
like for example experiments which exploit high capacities and
reconfigurable networks, which need programmable network
equipments, which need information services not exposed
within the current Internet, which need to be deployed on fully
reservable and configurable computing or switching fabrics,
which may congest links and present security risks. The
national Grid5000 plate-forme has been designed and built to
offer researchers such a large-scale realistic and reconfigurable
instrument.

Grid5000 is a research tool, featured with deep control,
reconfiguration and monitoring capabilities to complement
network simulators and emulators. It allows the users to
reserve the same set of dedicated nodes across successive
experiments, and to have full controll of these nodes to run
their own experimental condition injector and measurement
software. This can be achieve thanks to two tools: OAR and
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Kadeploy. OAR is a reservation tool which offers advanced
features (CPU/Core/Switch reservation). Kadeploy is an envi-
ronment deployment system which allows the users to have
their own customized environment automatically deployed on
a large number of nodes. For example, kernel modules for rate
limitation, congestion control variants or QoS measurement
can be added to the native operative system.

Grid5000 is a 5000 CPUs nation wide grid infrastructure
dedicated to network and grid computing research [7]. Up to
17 French laboratories are involved and 9 sites geographically
distributed are hosting one or more cluster of about 500 cores
each (Figure 6). The sites are interconnected by a dedicated
optical network provided by RENATER, the French National
Research and Education Network. It is composed of private
10 Gbps Ethernet links connected to a DWDM core with
dedicated 10 Gbps lambdas, with a bottleneck at 1 Gbps in
Bordeaux. Two international interconnections are also avail-
able: one at 10 Gbps with DAS3 (the Netherlands) and one at
1 Gbps with Nareji (Japan). As a private testbed dedicated to
research, Grid5000 made it easy to install the experimental
hardware of Metroflux at representative traffic aggregation
points. In the scenario detailled below, the Metroflux system
is measuring the access link of the Grid5000 Lyon site.

D. Network eXperiment Engine

The Network eXperiment Engine (NXE) [6] is a tool to au-
tomate networking experiments in real testbeds environments.
It allows to simply script experiments involving hundreds of
nodes.

A networking experiment is described with a scenario
skeleton defined as a succession of dates at which events
occur. An event corresponds to the starting point of an action
(e.g. the start of a new bulk data transfer, of a new web
session) combined with the parameters relevant to this action
(e.g. distribution law of file sizes, inter waits). An action takes
place between a set of end-hosts, whose size depends on the



kind of application we are trying to model (e.g.2 for data
transfers, many for parallel applications).

The end-hosts are organised in a networking abstract topol-
ogy, that roughly defines sites (e.g. aggregation of end-hosts,
as in a cluster), aggregation points between them (e.g. switches
or routers) and networking links. The “abstract” term refers to
the fact that an instantiation of the nodes over this topology is
needed at run-time as in real testbeds, and resources allocation
mechanisms might be used to accommodate multiple users.

Figure 7 shows the experiment workflow, and the various
operations that are done at each stage of the execution of a
protocol evaluation scenario. This workflow is a description
of an evaluation process. It is composed of a number of
tasks which are connected in the form of a directed graph.
These tasks have been broken up into elementary operations
to explicit what is done precisely at each stage. The tasks
were designed so that there is as little interaction as possible
between successive tasks. The description of each stage of the
workflow is as follows:

Reservation: at this stage, the available resource allocator
services are contacted to get the resources needed
by the experiment, e.g. computing nodes or network
links.

Deployment: this configuration phase can be either a reboot
of the nodes using an adequate kernel image, or just
the setting of the OS internal variables (e.g. TCP
buffer size) to the appropriate value.

Configuration: at this stage, the available hardware
(e.g. hardware latency emulator, routers) are con-
tacted to alter the topology, or to activate the gather-
ing of statistical information (e.g. aggregate through-
put) according to the needs of the experiment.

Scenario execution: here the actual execution of the sce-
nario is started. The scenario can be run multiple
times in a row to ensure that the results are consis-
tent.

Log handling: the logs generated by the nodes and the
global logging facility are gathered at a single point
for analysis.

Log analysis: the logs are parsed, and metrics are computed
from them to generate graphs that can be easily
interpreted by the user.

Archiving and cleaning: resources are reset and released.

The scenarios are described through XML files that provide
a simple and hierarchical description of the topology, the
general configuration and the interactions between the end-
hosts.

NXE is an application that scripts the execution of a sched-
ule based on a centralised relative timer, that is generated from
the input scenario description. It assumes that the granularity
of the scenario execution steps is coarse and in the same
order of magnitude as a second. For scalability purposes, it
launches a separate thread for every node involved in the
scenario, and issues the commands at the appropriate time via
an SSH remote command execution. Only one SSH connection
is opened per node
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Figure 8 presents the graphical interface that was de-
velopped over the NXE software to automatically generate
the input XML files. Here the resource selection part over
Grid5000 is featured. It also allows the simple definition of
the timeline of a scenario.

More information can be found at the following
website address: http://www.ens-lyon.fr/LIP/RESO/Software/
NXE/index.html

III. USE CASES

We now present two typical examples that clearly illustrate
the assets of our experimental facility.

A. Measurement and traffic analysis of a controlled experi-
ment

The aim of this experiment is to validate on a large scale
experimental network the relationship between the tail index
of the (heavy-tailed) flow size distribution and the long-range
dependence (LRD) parameter of the aggregated traffic [8],
[9]. This experiment was initially performed with a 1 Gbps
bottleneck with the GtrcNET-1. The method remains the same
when using a GtrceNET-10 on a 10 Gbps link.



1) Scenario description: The topology used for this exper-
iment is described on Figure 9: 100 clients nodes in Lyon
(sources) are emitting to 100 server nodes in Rennes (destina-
tions). The average RTT is 12 ms. Each client behaves like
a ON/OFF source: ON periods correspond to a flow emission
and OFF periods to an idle time separating two consecutive
ON periods. The source rate during an ON period is limited to
5 Mbps to avoid congestion at the 1 Gbps bottleneck. The rate
limitation mechanism can be chosen: pspacer, token bucket or
TCP window limitation.

For the purpose of our experiment, the ON periods are
independent and identically distributed random variables, fol-
lowing a heavy-tailed distribution of tail index «. The OFF
periods are exponentially distributed with the same mean as
the ON periods.

During the 8-hours experiment, the out-going traffic from
Lyon is mirrored and sent to the capture device (see Figure 9).
It results in a trace stored on the server, containing all the
packet headers with their associated timestamp packets, that
can be used for off-line statistical analysis.

2) Analysis and results from the captured trace: All the
informations needed to compute the tail index and LRD index
can now be retrieved from the trace.

Firstly, grouping and counting the packets in each con-
tiguous time interval yields the aggregate traffic time series,
from which the LRD index can be measured using appropriate
wavelet-based tools [10].

Secondly, flows can be reconstructed from the trace. To do
so, the packets sharing the same IP source and destination
addresses, the same source and destination ports and the same
protocol are grouped into a flow, as long as two such consecu-
tive packets are not separated by more than a threshold named
timeout, whose value has to be carefully chosen. From this
flow reconstruction, we then can easily extract the flow sizes,
and then estimate the tail index to verify that it coincides with
that imposed to the ON duration distribution. The tail index
estimator used is a recent wavelet-based estimator whose good
performances are shown in [11].

Thus, from a trace capture at an aggregated link, we are
able to measure the tail index and the LRD index, and then
to check the link between these two indices. The use of the
fully controllable tool Grid5000 allows us to perform the same
experiment many times, while varying a lot of parameters: the
protocol, the tail index, the rate limitation, etc. The impact
of all these parameters can then be thoroughly studied. More
details about this kind of experiments, and the results can be
found in [12].

3) Sampling: Even if GtrcNET-10 enables full packet cap-
ture at 10 Gbps, the capture of all the timestamped packet
headers at this speed can prove very demanding in terms
of storage resources. To limit this resource consumption,
a sampling function has been implemented in GtrcNET-10:
when activated, it captures only one packet every N packets,
for an arbitrary value of N.

Yet, because of its aggregated characteristic, the LRD pa-
rameter can still easily be estimated from a sub-sampled trace,

IN2P3-FERMILab 2xGE
Path setup

n2p3 GEANT  GzLondon

o S
FowEn e RENATER . MTESRy T, OERE
i v
- —K ey :
1626LM 1626LM \\
7

N2Pa VUi
IN2P3 /VL i

_ 10GE IN2PIREN,
: X : 201GE AN
— NP3 Lyon
8508

g

rEEE—..
R

s
s
ol ST

e HOPI CHICAGO HOPI

P = e
=
i

(Glimmergless  yiop)

Fig. 10. in2p3-fermilab link

whereas the estimation of the tail index becomes much more
complicated in such situation. To solve this problem, we have
derived in [13] the exact maximum likelihood solution for the
estimation of the tail index from sub-sampled data.

B. Measurement and analysis of real production grid traffic

1) Description of the analyzed link: Figure 10 shows the
paths of the production traffic between in2p3 (Lyon, France)
and fermilab (Chicago, IL, USA). We “plugged” Metroflux at
the output of the in2p3 to capture the traffic of the 1 Gbps
Ethernet VLAN encapsulated in the 10 Gbps link, using a
GtrcNET-1.

2) Results: We now present the results obtained from a 50
days continuous capture on the link described in the previous
subsection. Although we were able to monitor outgoing traffic
as well as incoming traffic, we only present the results associ-
ated with incoming traffic (both have the same characteristics).

As explained in Example I, we are able to reconstruct from
the capture the list of all the flows with their characteristics
(length (in packets), volume (in Bytes), duration, etc.). Figure
11 shows the distribution of the flow volume and duration,
where we separated three different types of flows with respect
to the mean size p of the flow’s packets: 1 = 64 (small pack-
ets, mainly ACKs’ flows), u = 1448 (large packets, typical
of data’s flows), 64 < p < 1448 (intermediate). Interestingly,
we can see that the tail of the flow volume distribution is
constituted by flows of large packets (blue curve), but the
tail of the flow duration distribution is constituted by flows
of small and intermediate packets (red and green curves). It
means that the largest flows in term of volume are not the
longest flows in term of duration.

To complement this study with a joint analysis of the du-
ration and the volume, Figure 12 represents the flow duration
against the flow volume for the three flow types, and for all
the flows. We see again in Figure 12 that the longest (in term
of duration) flows are not the largest ones (in term of volume).
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IV. RELATED WORK

A few studies have already focused on the feasibilty of
network traffic capture at speeds as high as 10 Gbps, using
commodity hardware ([14], [15]). Most of these studies and
of the few solutions available on the market to perform
traffic capture (for example, products from Endace, Solera
Networks, or GigaStor) focus on full traffic capture, whereas
our requirements only include the capture of packet headers,
which are sufficient for our needs. Besides, a lot of the solu-
tions available today are designed and marketed as intrustion
detection or prevention systems, and focus on real-time deep-
packet inspection rather than traffic capture.

Moreover, our requirements also include the capability of
capturing headers with no loss, or very few packet loss even
in the worst case of very small packets arriving at the maximal
load. In this worst case, the capture system has to cope with
a data bandwith which is almost as high as if it was storing
the full packets instead of the headers, so that the technical
problems are quite similar:

1) The capture server has to handle a high number of

packets per second, which will in turn trigger a high
number of interrupts per second, if using the legacy

network stack.
2) The data path in the capture system has to be as short
and direct as possible, and keep data copy to a minimum.
3) The disk storage has to be both very large and very fast.

In [14], the authors come to the conclusion that commodity
hardware is unable to fulfill all these requirements and they
propose to distribute to capture among several servers. DAG
cards, from Endace, which are quite popular in the research
community, address the first two problems by optimizing data
path in the host system and providing an appropriate API.
The authors in [15] solve the two first problems by using a
state of the art (at the time of the writing) high performance
server, carrefully tweaked for the task, and custom software
optimizing the capture. They solve the storage problem by
using a very powerfull raid array. They also use a special
dataseries file format for the storage.

In our solution, the first problem is solved by the fact
that the GtrcNET groups a lot of headers in a UDP frame
(currently: 62 headers per frame with GtrcNET-10). The
number of interrupts is therefore divided by 62. The second
problem is addressed by using the MAPI library with a
custom GtrcNET driver (using libpcap internally) and some
optimizations. This is perhaps not the optimal solution, but it
has proved to be effective. Finally, thanks to the continuous
increase in hardware performances, we were able to prepare
the capture server and disk storage enclosure using very
common hardware, at a very competitive cost. The storage
system is made of 15 disks organized in a RAID-0 array.
These disks are 300 GB 15K RPM SAS disks, for a total
of 4.5 TB. At some point during the project we also evaluated
the possibility to use Solid State Storages instead of hard disk
storage, but this technology is still very new.

Finally, being based on a programmable FPGA network
appliance separated from the capture server, Metroflux allows
a lot of processing to be performed in hardware, including
filtering and/or sampling of traffic to capture. A lot of other
functions are also available (traffic shaping, latency emulation,
custom functions).

V. CONCLUSION

In this paper we have presented Metroflux, a fully opera-
tional metrology platform based on the GtrcNET hardware. It
enables a full packet header capture at very high speed links
(10 Gbps) and a fine grain flow analysis. In two examples,
we have shown how Metroflux can be used to monitor high
speed links at packet level and get usefull insights on the
characteristics of the traffic going through these links. It
makes from Metroflux an original monitoring tool of primary
importance for very high speed network research. Then we
plan to deploy several Metroflux system in each Grid5000
site. Our future work is to develop an interface and a software
library for easily accessing Metroflux to provide researchers
with a customizable tool for debugging their application and
better understand how the traffic behaves and interacts with
their own flows during an experiment on the Grid5000 testbed
or other research facility.
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Fig. 1. Capture and analysis of the traffic with Metroflux



