
Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 1

Introduction to Neural Networks and
Deep Learning

Patrick Loiseau

(based on slides from Georges Quénot)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 2

Reference

• Ian Goodfellow and Yoshua Bengio and Aaron
Courville. Deep learning. MIT Press, 2016

– In part. Chap 6 and 9
– https://www.deeplearningbook.org/

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 3

Content
• Introduction
• Machine learning reminders
• Multilayer perceptron
• Back-propagation
• Convolutional neural networks (images)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 4

INTRODUCTION

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 5

2012

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 6

ImageNet Classification 2012 Results
Krizhevsky et al. – 16.4% error (top-5)
Next best (Pyr. FV on dense SIFT) – 26.2% error

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 7

ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

• 1000 visual “fine grain” categories / labels (exclusive)
• 150,000 test images (hidden “ground truth”)
• 50,000 validation images
• 1,200,000 training images
• Each training, validation or test image falls within exactly one

of the 1000 categories
• Task: for each image in the test set, rank the categories

from most probable to least probable
• Metric: top-5 error rate: percentage of images for which the

actual category is not in the five first ranked categories
• Held from 2010 to 2015, frozen since 2012

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 8

ImageNet Classification 2013 Results
http://www.image-net.org/challenges/LSVRC/2013/results.php
Demo: http://www.clarifai.com/

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 9

For comparison, human performance is 5.1% (Russakovsky et al.)

Going deeper and deeper

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 10

Deep Convolutional Neural Networks

• Decades of algorithmic improvements in neural networks
(Stochastic Gradient Descent, initialization, momentum …)

• Very large amounts of properly annotated data (ImageNet)
• Huge computing power (Teraflops × weeks): GPU!
• Convolutional networks
• Deep networks (>> 3 layers)
• ReLU (Rectified Linear Unit) activation functions
• Batch normalization
• Drop Out
• …

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 11

Deep Learning is (now) EASY

• Maths: linear algebra and differential calculus (training only)
– 𝑌 = 𝐴. 𝑋 + 𝐵 (with tensor extension)
– 𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓, 𝑥 . ℎ + 𝑜 ℎ (with multidimensional variables)
– 𝑔	𝑜	𝑓 , 𝑥 = 	 𝑔,𝑜	𝑓 𝑥 . 𝑓, 𝑥 (recursively applied)

• Tools: amazingly integrated, effective and easy to use packages
– Mostly python interface
– Autograd packages: only need to care of the linear algebra part
– Main: PyTorch, TensorFlow

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 12

MACHINE LEARNING
REMINDERS

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 13

• Target function: f : X ® Y
x ® y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible image tags:

Learning a target function

𝑓
	

																

	
= “cat”

𝑓
	

																

	
= “dog”

𝑓
	

																

	
= “car”

𝑋 = 0 [0,1]6×8×9
�

(6,8)∈ℕ∗@
	

𝑌 = “cat”, “dog”	 … 	

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 14

• Target function: f : X ® Y
x ® y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible tag scores:

Learning a target function

𝑓
	

																

	
=

	
						

	 𝑋 = 0 [0,1]6×8×9
�

(6,8)∈ℕ∗@
	

𝑌 = ℝ “cat”,“dog”	… 	= ℝC

0.90
0.04
0.01
…

𝑓
	

																

	
=

	
						

	

𝑓
	

																

	
=

	
						

	

0.07
0.88
0.02
…

0.02
0.03
0.86
…

¬ “cat”
¬ “dog”
¬ “car”
¬ …

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 15

• Target function: f : X ® Y
x ® y = f(x)

– x : input object, e.g., image descriptor
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible image descriptors:

(or subset of it)

Set of possible tag scores:

𝐷 is a predefined and fixed function

from to ℝE

Learning a target function

𝑓 𝐷
	

																

	
			 =

	
						

	
𝑋 = ℝE	

𝑌 = ℝC

0.90
0.04
0.01

…

0.07
0.88
0.02

…

0.02
0.03
0.86

…

𝑓 𝐷
	

																

	
			 =

	
						

	

𝑓 𝐷
	

																

	
			 =

	
						

	 0 [0,1]6×8×9
�

(6,8)∈ℕ∗@
	

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 16

Supervised learning
• Target function: f : X ® Y

x ® y = f(x)
– x : input object (typically vector)
– y : desired output (continuous value or class label)
– X : set of valid input objects
– Y : set of possible output values

• Training data: S = (xi,yi)(1 £ i £ I)
– I : number of training samples

• Learning algorithm: L : (X×Y)* ® YX

S ® f = L(S)

• Regression or classification system:
y = f(x) = [L(S)](x) = g(S, x)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 17

Parametric supervised learning
• Parameterized function:		𝑓: ℝF ® YX

𝜃 ® 𝑓H

• 𝑓 is a “meta” function or a family of function

• Target function: 𝑓H : X ® Y
x ® y = 𝑓H	(x)

– X : set of valid input objects (ℝE)
– Y : set of possible output values (ℝC)

• Training data: S = (xi,yi)(1 £ i £ I)
– I : number of training samples

• Learning algorithm: 𝐿K : (X×Y)* ® ℝF (learns 𝜃 from S)
S ® 𝜃 = 𝐿K	(S)

• Regression or classification system: 𝑦 = 𝑓H 𝑥 = 𝑓 𝜃, 𝑥

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 18

Single-label loss function
• Quantifies the cost of classification error or the

“empirical risk”

• Example (Mean Square Error): 𝐸N 𝑓 = ∑ (𝑓 𝑥P − 𝑦P)RPST
PSU

• If 𝑓 depends on a parameter vector q (L learns q):
𝐸N q = U

R
∑ (𝑓 q, 𝑥P − 𝑦P)RPST
PSU

• For a linear SVM with soft margin, q = 𝑤, 𝑏 :
𝐸N q = U

R
𝑤 R + 𝐶.∑ max(0,1 − 𝑦P 𝑤\𝑥P + 𝑏)PST

PSU

• The learning algorithm aims at minimizing the
empirical risk: q∗ = argmin

q
	𝐸N q

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 19

MULTILAYER PERCEPTRON

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 20

Formal neural or unit (two sub-units)

𝑦 =a𝑤b𝑥b

�

b

= 𝑤. 𝑥

z

x1
x2
x3
x4
x5

𝑧 = 𝜎 𝑦 + 𝑏 =
1

1 + 𝑒fgh

linear combination ex: sigmoid function

w,b

𝑥 : column vector
𝑤 : row vector

𝑦, 𝑏, 𝑧 : scalars

linear and vector part non-linear and scalar part

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 21

Formal neural or unit (two sub-units)

𝑦 =a𝑤b𝑥b

�

b

= 𝑤. 𝑥

y

x1
x2
x3
x4
x5

𝑧 = 𝜎 𝑦 + 𝑏 =
1

1 + 𝑒fgh

linear combination

w

Globally equivalent to a logistic regression

linear and vector part non-linear and scalar part

zy b

ex: sigmoid function

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 22

Neural layer (all to all, two sub-layers)

𝑦P =a𝑤Pb𝑥b

�

b

𝑧P = s 𝑦P + 𝑏P =
1

1 + 𝑒fighi

matrix-vector multiplication per component operation
𝑌 = 𝑊.𝑋 𝑧 = s 𝑌 + 𝐵

z1

x1

x2

x3

x4

x5

z2

z3

w1,b1

w2,b2

w3,b3

W,B

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 23

Multilayer perceptron (all to all)

o1i1

i2

input
layer

output
layer

i3

i4

o2

o3

o4

hidden
layer

I=X0 X3=OX1 X2
W1,B1 W2,B2 W3,B3

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 24

Multilayer perceptron (all to all)

𝑌U = 𝑊U. 𝑋k = 𝐹U 𝑊U, 𝑋k

o1i1

i2

i3

i4

o2

o3

o4

I=X0 X3=OX1 X2
W1,B1 W2,B2 W3,B3

𝑋U =s 𝑌U + 𝐵U = 𝐺U 𝐵U, 𝑌U
𝑌R = 𝑊R. 𝑋U = 𝐹R 𝑊R, 𝑋U 𝑋R =s 𝑌R + 𝐵R = 𝐺R 𝐵R, 𝑌R
𝑌9 = 𝑊9. 𝑋9 = 𝐹9 𝑊9, 𝑋R 𝑋9 =s 𝑌9 + 𝐵9 = 𝐺9 𝐵9, 𝑌9

𝑂 = 𝑋9 = 𝐺9 𝐵9, 𝐹9 𝑊9, 𝐺R 𝐵R, 𝐹R 𝑊R, 𝐺U 𝐵U, 𝐹U 𝑊U, 𝑋k = 𝐼

𝑂 = 𝐺9 𝐵9 	𝑜	𝐹9 𝑊9 	𝑜	𝐺R 𝐵R 	𝑜	𝐹R 𝑊R 	𝑜	𝐺U 𝐵U 	𝑜	𝐹U 𝑊U (𝐼)

Denoting 𝐹 𝑊 so that 𝐹 𝑊,𝑋 = (𝐹 𝑊) 𝑋 :

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 25

Composition of simple functions

𝑋U = 𝑊U. 𝑋k = 𝐹U 𝑊U, 𝑋k 𝑋R =s 𝑋U +𝑊R = 𝐹R 𝑊R, 𝑋U
𝑋9 = 𝑊9. 𝑋R = 𝐹9 𝑊9, 𝑋R 𝑋p =s 𝑋9 +𝑊p = 𝐹p 𝑊p, 𝑋9
𝑋q = 𝑊q. 𝑋p = 𝐹q 𝑊q, 𝑋p 𝑋r =s 𝑋q +𝑊r = 𝐹r 𝑊r, 𝑋q

𝑂 = 𝐹r 𝑊r 	𝑜	𝐹q 𝑊q 	𝑜	𝐹p 𝑊p 	𝑜	𝐹9 𝑊9 	𝑜	𝐹R 𝑊R 	𝑜	𝐹U 𝑊U 𝐼 = 𝑜sSUsSr	𝐹s 𝑊s 𝐼

X1 X4

W3

i1

i2

i3

i4

I=X0

W1 W2 W4

o1

o2

o3

o4

X6=O
W6W5

X2 X3 X5

linear non-linear linear non-linear linear non-linear

Splitting units and layers, renaming and renumbering:

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 26

Non-linear functions

• Sigmoid: 𝑧 = U
Ugtu

• Hyperbolic tangent: 𝑧 = tanh 𝑦

• Rectified Linear Unit (ReLU): 𝑧 = max(0, 𝑦)

• Programmable ReLU (PReLU) : 𝑧 = max(α𝑦, 𝑦)
with α learned (i.e. α	Ì	𝑊)

• …

• Appropriate non-linear functions leads to better
performance and/or faster convergence

• Avoid vanishing / exploding gradients

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 27

Composition of simple functions

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 28

Composition of simple functions

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 29

Feed Forward Network
• Global network definition: 𝑂 = 𝐹 𝑊, 𝐼

(𝐼 ≡ 𝑥		𝑂 ≡ 𝑦		𝐹 ≡ 𝑓		𝑊 ≡ q relative to previous notations)

• Layer values: 𝑋k, 𝑋U …	𝑋{
with 𝑋k = 𝐼 and 𝑋{ = 𝑂 (𝑋s are vectors)

• Global vector of all unit parameters:
𝑊 = 𝑊U,𝑊R 	…		𝑊{
(weights by layer are concatenated, 𝑊s can be matrices or
vectors or any parameter structure, and even possibly
empty)

• Feed forward: 𝑋sgU = 𝐹sgU 𝑊sgU, 𝑋s

• Possibly “joins” and “forks” (but no cycles)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 30

Example: the XOR function
• XOR is not linearly separable

– Single layer with one hidden unit à no

– Without any non-linearity à no

– One hidden layer with 2 hidden units and ReLU à yes

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 31

Learning Algorithm

• Training set: 𝑆 = 𝐼P, 𝑂P U}P}T input-output samples

• 𝑋P,k = 𝐼P and 𝑋P,sgU = 𝐹sgU 𝑊sgU, 𝑋P,s

• Note: regarding this notation the vector-matrix
multiplication counts as one layer and the element-wise
non-linearity counts as another one (not mandatory but
greatly simplifies the layer modules’ implementation)

• Error (empirical risk) on the training set:
𝐸N 𝑊 = ∑ 𝐹 𝑊, 𝐼P − 𝑂P R�

P = 	∑ 𝑋P,{ − 𝑂P
R�

P

• Minimization on 𝑊 of 𝐸N 𝑊 by gradient descent

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 32

Gradient descent

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 33

Stochastic gradient descent
and batch processing

• 𝐸N 𝑊 = ∑ 𝐹 𝑊, 𝐼P − 𝑂P R�
P = 	∑ 𝐸P 𝑊�

P

• 𝑊 𝑡 + 1 = 𝑊 𝑡 − h 𝑡 ��
��

𝑡 = 𝑊 𝑡 − ∑ h 𝑡 ��i
��

𝑡�
P

• Global update (epoch): sum of per sample updates

• Classical GD: update 𝑊 globally after all 𝐼 samples have
been processed (1 ≤ 𝑖 ≤ 𝐼)

• Stochastic GD: update 𝑊 after each processed sample
→ immediate effect, faster convergence

• Batch: update 𝑊 after a given number (typically between
32 and 256) of processed samples → parallelism

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 34

Learning rate evolution

• 𝑊 𝑡 + 1 = 𝑊 𝑡 − h 𝑡 ��
��

𝑊 𝑡

• Large learning rate: instability

• Small learning rate: slow convergence

• Variable learning rate: learning rate decay policy

• Most often: step strategy: iterate “constant during a
number of epochs, then divide by a given factor”

• Possibly different learning rates for different layers or for
different types of parameters, generally with common
evolution

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 35

Gradient descent in practice

• Cost functions are not convex

• Sometimes not differentiable (ReLU)
– Only at a small number of points
– Works well in practice

CHAPTER 4. NUMERICAL COMPUTATION

x

f
x(

)

Ideally, we would like
to arrive at the global
minimum, but this
might not be possible.

This local minimum
performs nearly as well as
the global one,
so it is an acceptable
halting point.

This local minimum performs
poorly and should be avoided.

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.

The directional derivative in direction (a unit vector) is the slope of theu

function f in direction u. In other words, the directional derivative is the derivative
of the function f (x+ αu) with respect to α, evaluated at α= 0. Using the chain
rule, we can see that ∂

∂αf α(+x u) evaluates to u�∇xf α()x when = 0.

To minimize f , we would like to find the direction in which f decreases the
fastest. We can do this using the directional derivative:

min
u u, �u=1

u
�∇xf()x (4.3)

= min
u u, �u=1

|| ||u 2||∇xf()x ||2 cos θ (4.4)

where θ is the angle between u and the gradient. Substituting in || ||u 2 = 1 and

ignoring factors that do not depend on u, this simplifies to minu cos θ. This is
minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the or .method of steepest descent gradient descent

Steepest descent proposes a new point

x
� = x− ∇s xf()x (4.5)

85

Source: Goodfellow et al,
MIT Press 2016

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 36

Architecture design
• Universal approximation theorem

– a feed-forward network with a single hidden layer containing a
finite but sufficient number of neurons can approximate (arbitrarily
well) any continuous functions on compact subsets of Rn, under
mild assumptions on the activation function (e.g., sigmoid).

• But…

– Optimization algorithm might fail + overfitting

• Empirically, deeper networks generalize better

è Ideal network architecture via experimentation guided by
monitoring the validation error

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 37

BACKPROPAGATION

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 38

Error back-propagation
• Minimization of 𝐸N 𝑊 by gradient descent:

– The gradient indicate an ascending direction: move in the opposite

– Randomly initialize 𝑊 0

– Iterate 𝑊 𝑡 + 1 = 𝑊 𝑡 − h ��
��

𝑊 𝑡 h = 𝑓 𝑡 or �@�
��@ 𝑊 𝑡

�U

– ��
��

= ��
���

, ��
��@

	…		 ��
���

(𝑊 = 𝑊U,𝑊R 	…		𝑊{)

– Back-propagation:
��
���

is computed by backward recurrence from

���
���

and
���
�����

applying iteratively 𝑔	𝑜	𝑓 , = 	 𝑔,𝑜	𝑓 . 𝑓′

– Two derivatives, relative to weight and to data to be considered

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 39

Error back-propagation (adapted from Yann LeCun)

𝐹1	(𝑊1	
, 𝑋0)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝐹𝑁	(𝑊𝑁	, 𝑋𝑁-1)

𝐶	(𝑋𝑁	, 𝑂)

𝑋𝑛-1

𝑊𝑛

𝑋𝑁-1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

¶𝐸/	¶𝑋𝑛-1

¶E/ ¶Xn

¶𝐸/	¶𝑋𝑁-1

¶𝐸/	¶𝑋𝑁

¶𝐸/	¶𝑋1

¶𝐸/	¶𝑊𝑛

¶𝐸/	¶𝑊𝑁

¶𝐸/	¶𝑊1

O

𝐸
Ac

cu
m

ul
at

e
an

d
up

da
te

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:
𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	

, 𝑋s�U)
𝐸 = 𝐶	(𝑋𝑁	, 𝑂)

We need gradients with
respect to 𝑋s. For 𝑛 = 𝑁:
𝜕𝐸
𝜕𝑋{

=
𝜕𝐶 𝑋{, 𝑂
𝜕𝑋{

Then backward recurrence:

𝜕𝐸
𝜕𝑋s�U

=
𝜕𝐸
𝜕𝑋s

𝜕𝐹s 𝑊s, 𝑋s�U
𝜕𝑋s�U

Gradients with respect to 𝑊s.
For 1 ≤ 𝑛 ≤ 𝑁:
𝜕𝐸
𝜕𝑊s

=
𝜕𝐸
𝜕𝑋s

𝜕𝐹s 𝑊s, 𝑋s�U
𝜕𝑊s

𝑋1

𝑋𝑁

𝑋𝑛

h

Forward pass
Data backward pass

Param backward pass

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 40

Error back-propagation 0: Prediction mode

𝐹1	(𝑊1	
, 𝑋0)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝐹𝑁	(𝑊𝑁	, 𝑋𝑁-1)

𝑋𝑛-1

𝑊𝑛

𝑋𝑁-1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

Pa
ra

m
et

er
 s

to
ra

ge
Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:
𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	

, 𝑋s�U)

𝑋1

𝑂 = 𝑋𝑁

𝑋𝑛

Forward pass

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 41

Error back-propagation 1: loss function

𝐹1	(𝑊1	
, 𝑋0)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝐹𝑁	(𝑊𝑁	, 𝑋𝑁-1)

𝐶(𝑋𝑁	, 𝑂)

𝑋𝑛-1

𝑊𝑛

𝑋𝑁-1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

O

𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:
𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	

, 𝑋s�U)

Loss function (for one sample):
𝐸 = 𝐶 𝑋𝑁	, 𝑂𝐸 𝑊, 𝐼, 𝑂 = 𝐶 𝐹 𝑊, 𝐼 , 𝑂

Sum over the whole training
set or over a batch of samples:

𝐸 𝑊 =a𝐸 𝑊, 𝐼P, 𝑂P

�

P

Same 𝑊, different 𝐼P, 𝑂P

Update:

𝑊 = 𝑊 − 𝜂
𝜕𝐸 𝑊
𝜕𝑊

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 42

Error back-propagation 2: Data backward pass

𝐹1	(𝑊1	
, 𝑋0)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝐹𝑁	(𝑊𝑁	, 𝑋𝑁-1)

𝐶(𝑋𝑁	, 𝑂)

𝑋𝑛-1

𝑊𝑛

𝑋𝑁-1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

¶𝐸/	¶𝑋𝑛-1

¶E/ ¶Xn

¶𝐸/	¶𝑋𝑁-1

¶𝐸/	¶𝑋𝑁

¶𝐸/	¶𝑋1

O

𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:
𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	

, 𝑋s�U)
𝐸 = 𝐶(𝑋𝑁	, 𝑂)

We need gradients with
respect to 𝑋s. For 𝑛 = 𝑁:
𝜕𝐸
𝜕𝑋{

=
𝜕𝐶 𝑋{, 𝑂
𝜕𝑋{

Then backward recurrence:

𝜕𝐸
𝜕𝑋s�U

=
𝜕𝐸
𝜕𝑋s

𝜕𝐹s 𝑊s, 𝑋s�U
𝜕𝑋s�U

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 43

Error back-propagation 3: Parameter backward pass

𝐹1	(𝑊1	
, 𝑋0)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝐹𝑁	(𝑊𝑁	, 𝑋𝑁-1)

𝐶	(𝑋𝑁	, 𝑂)

𝑋𝑛-1

𝑊𝑛

𝑋𝑁-1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

¶𝐸/	¶𝑋𝑛-1

¶E/ ¶Xn

¶𝐸/	¶𝑋𝑁-1

¶𝐸/	¶𝑋𝑁

¶𝐸/	¶𝑋1

¶𝐸/	¶𝑊𝑛

¶𝐸/	¶𝑊𝑁

¶𝐸/	¶𝑊1

O

𝐸
Pa

ra
m

et
er

 s
to

ra
ge

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:
𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	

, 𝑋s�U)
𝐸 = 𝐶	(𝑋𝑁	, 𝑂)

We need gradients with
respect to 𝑋s. For 𝑁:
𝜕𝐸
𝜕𝑋{

=
𝜕𝐶 𝑋{, 𝑂
𝜕𝑋{

Then backward recurrence:

𝜕𝐸
𝜕𝑋s�U

=
𝜕𝐸
𝜕𝑋s

𝜕𝐹s 𝑊s, 𝑋s�U
𝜕𝑋s�U

Gradients with respect to 𝑊s.
For 1 ≤ 𝑛 ≤ 𝑁:
𝜕𝐸
𝜕𝑊s

=
𝜕𝐸
𝜕𝑋s

𝜕𝐹s 𝑊s, 𝑋s�U
𝜕𝑊s

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Param backward pass

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 44

Error back-propagation 4: Accumulate and update

𝐹1	(𝑊1	
, 𝑋0)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝐹𝑁	(𝑊𝑁	, 𝑋𝑁-1)

𝐶	(𝑋𝑁	, 𝑂)

𝑋𝑛-1

𝑊𝑛

𝑋𝑁-1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

¶𝐸/	¶𝑋𝑛-1

¶E/ ¶Xn

¶𝐸/	¶𝑋𝑁-1

¶𝐸/	¶𝑋𝑁

¶𝐸/	¶𝑋1

¶𝐸/	¶𝑊𝑛

¶𝐸/	¶𝑊𝑁

¶𝐸/	¶𝑊1

O

𝐸
Ac

cu
m

ul
at

e
an

d
up

da
te

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:
𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	

, 𝑋s�U)
𝐸 = 𝐶	(𝑋𝑁	, 𝑂)
…
Gradients with respect to 𝑊s.
For 1 ≤ 𝑛 ≤ 𝑁:
𝜕𝐸
𝜕𝑊s

=
𝜕𝐸
𝜕𝑋s

𝜕𝐹s 𝑊s, 𝑋s�U
𝜕𝑊s

Accumulate gradients and
update parameters.
For 1 ≤ 𝑛 ≤ 𝑁:

𝑊s = 𝑊s − 𝜂a
𝜕𝐸
𝜕𝑊s

𝑊, 𝐼P, 𝑂P

�

P

Usually on batches

𝑋1

𝑋𝑁

𝑋𝑛

h

Forward pass
Data backward pass

Param backward pass

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 45

Error back-propagation: simplified notations

𝐹1	(𝑊1	
, 𝑋0)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝐹𝑁	(𝑊𝑁	, 𝑋𝑁-1)

𝐶	(𝑋𝑁	, 𝑂)

𝑋𝑛-1

𝑊𝑛

𝑋𝑁-1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

¶𝐸/	¶𝑋𝑛-1

¶E/ ¶Xn

¶𝐸/	¶𝑋𝑁-1

¶𝐸/	¶𝑋𝑁

¶𝐸/	¶𝑋1

¶𝐸/	¶𝑊𝑛

¶𝐸/	¶𝑊𝑁

¶𝐸/	¶𝑊1

O

𝐸
Ac

cu
m

ul
at

e
an

d
up

da
te

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:
𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	

, 𝑋s�U)
𝐸 = 𝐶	(𝑋𝑁	, 𝑂)

We need gradients with
respect to 𝑋s. For 𝑛 = 𝑁:
𝜕𝐸
𝜕𝑋{

=
𝜕𝐶
𝜕𝑋{

Then backward recurrence:

𝜕𝐸
𝜕𝑋s�U

=
𝜕𝐸
𝜕𝑋s

𝜕𝑋s
𝜕𝑋s�U

Gradients with respect to 𝑊s.
For 1 ≤ 𝑛 ≤ 𝑁:
𝜕𝐸
𝜕𝑊s

=
𝜕𝐸
𝜕𝑋s

𝜕𝑋s
𝜕𝑊s

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Param backward pass

h

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 46

Layer module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝑊

¶𝐸/	¶𝑋𝑖𝑛

¶𝐸/	¶𝑋𝑜𝑢𝑡

¶𝐸/	¶𝑊

𝑋𝑜𝑢𝑡

𝐹(𝑊, 𝑋𝑖𝑛)
𝜕𝐹 𝑊, 𝑋Ps

𝜕𝑊
𝜕𝐹 𝑊,𝑋Ps

𝜕𝑋Ps× ×

Notes: 𝑋Ps ≡ 𝑋s�U , 𝑋��� ≡ 𝑋s , 𝑊 ≡ 𝑊s and 	𝐹 ≡ 𝐹s for 1 ≤ 𝑛 ≤ 𝑁

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 47

Layer module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝑊

¶𝐸/	¶𝑋𝑖𝑛

¶𝐸/	¶𝑋𝑜𝑢𝑡

¶𝐸/	¶𝑊

𝑋𝑜𝑢𝑡

𝐹(𝑊, 𝑋𝑖𝑛)
𝜕𝑋���
𝜕𝑊

𝜕𝑋���
𝜕𝑋Ps× ×

𝜕𝐹 𝑊, 𝑋Ps
𝜕𝑋Ps

≡
𝜕𝑋���
𝜕𝑋Ps

																	
𝜕𝐸
𝜕𝑋Ps

=
𝜕𝐸
𝜕𝑋���

𝜕𝑋���
𝜕𝑋Ps

𝜕𝐹 𝑊, 𝑋Ps
𝜕𝑊 ≡

𝜕𝑋���
𝜕𝑊 																			

𝜕𝐸
𝜕𝑊 =

𝜕𝐸
𝜕𝑋���

𝜕𝑋���
𝜕𝑊

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 48

Layer module (adapted from Yann LeCun)

𝜕𝐹 𝑊, 𝑋Ps
𝜕𝑋Ps

≡
𝜕𝑋���
𝜕𝑋Ps

																	
𝜕𝐸
𝜕𝑋Ps

=
𝜕𝐸
𝜕𝑋���

𝜕𝑋���
𝜕𝑋Ps

𝜕𝐹 𝑊, 𝑋Ps
𝜕𝑊 ≡

𝜕𝑋���
𝜕𝑊 																			

𝜕𝐸
𝜕𝑊 =

𝜕𝐸
𝜕𝑋���

𝜕𝑋���
𝜕𝑊

Gradient back-propagation rule:
The gradient relative to the input (either 𝑊 or 𝑋𝑖𝑛) is
equal to the gradient relative to the output (𝑋𝑜𝑢𝑡)
times the Jacobian of the transfer function
(respectively �����

��
or �����

��i�
, left vector multiplication)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 49

Autograd variable (PyTorch)

data : 𝑋 (may be 𝑋𝑖𝑛, 𝑊 or 𝑋𝑜𝑢𝑡)

grad : ��
��

				𝐸 : where backward() was called from

grad_fn : 𝐹 | 𝑋 = 𝐹(…) : “None” for 𝑊 or for inputs

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 50

Autograd variable (PyTorch)

𝐹𝑛	(𝑊𝑛	
, 𝑋𝑛-1)

𝑋𝑛-1

𝑊𝑛

¶𝐸/	¶𝑋𝑛-1

¶E/ ¶Xn

¶𝐸/	¶𝑊𝑛

𝑋𝑛

𝑁𝑢𝑙𝑙

𝑊𝑛 ¶𝐸/	¶𝑊𝑛

¶E/ ¶Xn𝑋𝑛
𝐹𝑛

𝑋𝑛-1 ¶𝐸/	¶𝑋𝑛-1

𝐹𝑛-1

𝐹𝑛

𝑊𝑛 is an input,
not produced by
any function:
grad_fn = Null

𝑋0 is an input,
not produced by
any function:
grad_fn = Null for 𝑋0

contains both
the data forward function

𝜕𝐸
𝜕𝑋s�U

=
𝜕𝐸
𝜕𝑋s

×
𝜕𝐹 𝑊, 𝑋s�U

𝜕𝑋s�U
𝜕𝐸
𝜕𝑊s

=
𝜕𝐸
𝜕𝑋s

×
𝜕𝐹 𝑊s, 𝑋s�U

𝜕𝑊s

𝑋𝑛 = 𝐹 𝑊𝑛, 𝑋𝑛-1
and the gradient backward
function(s)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 51

Autograd variable (PyTorch)

𝐶
	
(𝑋𝑁	, 𝑂)

𝑋𝑁

𝑂

¶𝐸/	¶𝑋𝑁

¶E/ ¶E

¶𝐸/	¶𝑂

𝐸

𝑁𝑢𝑙𝑙

𝑂 ¶𝐸/	¶𝑂

¶E/ ¶E𝐸

𝐶

𝑋𝑁 ¶𝐸/	¶𝑋𝑁

𝐹𝑁

𝐶

𝑂 is an input,
not produced by
any function:
grad_fn = Null

contains both
the data forward function

𝜕𝐸
𝜕𝑋{

=
𝜕𝐸
𝜕𝐸 ×

𝜕𝐶 𝑋{, 𝑂
𝜕𝑋{

𝜕𝐸
𝜕𝑂 =

𝜕𝐸
𝜕𝐸 ×

𝜕𝐶 𝑋{, 𝑂
𝜕𝑂

𝐸 = 𝐶 𝑋𝑁, 𝑂
and the gradient backward
function(s)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 52

Autograd backward()

Define 	𝑋𝑛 = 𝐹𝑛	(𝑊𝑛	
, 𝑋s�U) for 1 ≤ 𝑛 ≤ 𝑁 (or arbitrary network)

End with 𝐸 = 𝐶	(𝑋𝑁	, 𝑂)
Execute a forward pass for a training sample (𝐼, 𝑂)
Call E.backward() (backward pass from 𝐸 with ¶𝐸/¶𝐸=1)
Get all ¶𝐸/	¶𝑊𝑛 (and ¶E/ ¶Xn) for that training sample

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 53

Autograd Variable and function

Input may be multiple (𝑋𝑖𝑛,𝑊)
Autograd does not care about input types

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 54

Linear module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝑊

¶𝐸/	¶𝑋𝑖𝑛

¶𝐸/	¶𝑋𝑜𝑢𝑡

¶𝐸/	¶𝑊

𝑋𝑜𝑢𝑡

𝑋��� = 𝑊𝑋Ps
𝜕𝐸
𝜕𝑊 = 𝑋Ps

𝜕𝐸
𝜕𝑋���

𝜕𝐸
𝜕𝑋Ps

=
𝜕𝐸
𝜕𝑋���

𝑊

Note: 𝑋Ps and 𝑋��� are regular (column) vectors and 𝑊 is a matrix while ¶E/ ¶Xin
and ¶𝐸/	¶𝑋𝑜𝑢𝑡 are transpose (row) vectors (this is because d𝐸 = (¶𝐸/	¶𝑋).d𝑋).
¶𝐸/	¶𝑊 is a transposed matrix which is the outer product of the regular and
transpose vectors 𝑋Ps and ¶𝐸/	¶𝑋𝑜𝑢𝑡 .

Forward pass
Data backward pass

Param backward pass

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 55

Pointwise module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝐵

¶𝐸/	¶𝑋𝑖𝑛

¶𝐸/	¶𝑋𝑜𝑢𝑡

¶𝐸/	¶𝐵

𝑋𝑜𝑢𝑡

𝑋��� = 𝑓(𝑋Ps + 𝐵)𝜕𝐸
𝜕𝐵 =

𝜕𝐸
𝜕𝑋���

o 𝑓′(𝑋Ps + 𝐵) \ 𝜕𝐸
𝜕𝑋Ps

=
𝜕𝐸
𝜕𝑋���

o 𝑓′(𝑋Ps + 𝐵) \

Notes: 𝐵 is a bias vector on the input. 𝑋Ps, 𝑋��� and 𝐵 are regular (column) vectors
all of the same size while ¶E/ ¶Xin and ¶𝐸/	¶𝑋𝑜𝑢𝑡 and ¶𝐸/	¶𝐵 are transpose vectors
also of the same size. 𝑓 is a scalar function applied pointwise on 𝑋Ps + 𝐵. 𝑓′ is the
derivative of 𝑓 and is also applied pointwise. The multiplication by 𝑓′(𝑋Ps + 𝐵) \

is also performed pointwise (Hadamard product denoted “o” here).

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 56

Neural Networks training in practice

• Good news is that autograd automatically and
transparently takes care of gradients computation and
propagation; you just have to call .backward()

• You only have to define the forward network sequence

• You still have to select various hyper-parameters and to
organize:

– iterations
– batch processing
– learning rate schedule
– possibly data augmentation

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 57

Dropout

• Regularization technique

• During training, at each epoch, neutralize a given
(typically 0.2 to 0.5) proportion of randomly selected
connections

• During prediction, keep all of them with a multiplicative
compensating factor

• Avoid concentration of the activation on particular
connections

• Much more robust operation

• Faster training, better performance

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 58

Softmax

• Normalization of output as probabilities
(positive values summing to 1) for the multi-
class problem (i.e. target categories are
mutually exclusive)

• 𝑧P =
tui

∑ tu��
�

• Not suited for the multi-label case (i.e., target
categories are not mutually exclusive)

• Associated loss function is cross-entropy

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 59

Cross-entropy loss (multi-class)
• 𝑝P : probability vector for class 𝑖
• 𝑙P : truth value for class 𝑖 (“one hot encoding”)
• 𝐿 = ∑ − 𝑙P log 𝑝P�

P

• For exclusive classes, 𝑙P is equal to 1 only for the right
class 𝑖k and to 0 otherwise:

• 𝐿 = − log 𝑝P� (log 1 = 0 and log 0 = −¥)
• Forces 𝑝P� to be close to 1, very high loss value if 𝑝P� is

close to 0 ® faster convergence
• Other 𝑝P indirectly forced to be close to 0 because the
𝑝Ps sums to 1

• With softmax: forces 𝑦P� to be greater than the other 𝑦Ps

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 60

CONVOLUTIONAL NEURAL
NETWORKS (CNN)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 61

Classical Image classification

Plus: multiple features, early or late fusion, re-scoring …

Engineered
Feature
Extraction

Classical
Machine
Learning

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Support Vector Machines
Multilayer Perceptrons
Random Forests
…

Descriptors

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 62

Classical Image classification

Still classical since 3-layer MLPs are at least 30 years old

Engineered
Feature
Extraction

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Typically 3 layers
Not really better
than SVMs or
Random Forests

Descriptors

Multilayer
Perceptron

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 63

Deep “end-to-end” Image classification

• Fuzzy boundary between feature extraction and classification even if
there is a transition between convolutional and fully connected layers

• End-to-end learning: features (descriptors) themselves are learned
(by gradient descent) too, not engineered

• Possible only via the use of convolutional layers

ScoresImage

Learned Features Classification

Descriptors of increasing semantic level (𝑋s)

Convolutional
And Pooling

Layers

Fully
Connected

Layers(𝑋k) (𝑋{)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 64

Convolutional layers (2D grid case)
• Alternative to the “all to all”(vector to vector) connections
• Preserves the 2D image topology via “feature maps”
• 𝑋s are 3D data (“tensors”) instead of vectors
• 2 of the dimensions are aligned with the image grid
• The third dimension is a set of values associated to a

grid location (gathered in a vector per location but
without associated topology)

• Each component in the third dimension correspond to a
“map” aligned with the image grid

• Each data tensor is a “stack” of features maps
• Translation-invariant (relatively to the grid) processing

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 65

3D tensor data (2D grid case)

Image
height

Image
width

Feature
maps

Set of values
associated to
a single grid
location

Input image data is a special case with 3 feature maps
corresponding to the RGB planes and sometimes 4 or even
more for RGB-D or for hyper-spectral (satellite) image data.

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 66

Convolutional layers (2D grid case)

• Each map point is connected to all maps points of a
fixed size neighborhood in the previous layer

• Weights between maps are shared so that they are
invariant by translation in the image plane

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 67

Convolutional layers (2D grid case)

• Combination of:
–convolutions within the image plane
– “all to all” within the map dimension

• Separable or non-separable combinations
• Resolution changes across layers: stride and

pooling
• Examples: LeNet (1998) and AlexNet (2012)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 68

Classical image convolution (2D to 2D)
• Classical image convolution (2D to 2D):
𝑂 𝑖, 𝑗 = 𝐾 ∗ 𝐼 𝑖, 𝑗 = a 𝐾 𝑚, 𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

�

F,s

• Convolutional layer (3D to 3D):
• m and n : within a window around the current

location, corresponding to the filter size
• 𝐾(𝑚, 𝑛) : convolution kernel
• Example: (circular) Gabor filter:

					𝐾 𝑚, 𝑛 = U
R¢£@

. 𝑒�
¤@¥�@

@¦@ . 𝑒
R¢P¤.§¨© q¥�.©ª« q

l

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 69

Classical image convolution (2D to 2D)

3x3 convolution, half padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 70

Classical image convolution (2D to 2D)

3×3 convolution, no padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 71

Classical image convolution (2D to 2D)

3×3 convolution, full padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 72

Convolutional layers
• Convolutional layer: multiple maps (planes) both in input

and output (3D to 3D, plus bias):
𝑂 𝑙, 𝑖, 𝑗 = 𝐵 𝑙 + a 𝐾 𝑘, 𝑙,𝑚, 𝑛 𝐼(𝑘, 𝑖 − 𝑚, 𝑗 − 𝑛)

�

,F,s

• k and l: indices of the feature maps in the input and output
layers

• m and n: within a window around the current location,
corresponding to the feature size

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 73

Convolutional layers
• Convolutional layer: multiple maps (planes) both in input

and output (3D to 3D, plus bias):
𝑂 𝑙, 𝑖, 𝑗 = 𝐵 𝑙 + a 𝐾 𝑙, 𝑘,𝑚, 𝑛 𝐼(𝑘, 𝑖 − 𝑚, 𝑗 − 𝑛)

�

,F,s

• Operation relative to (𝑚, 𝑛) : convolution

• Operation relative to (𝑘, 𝑙) : matrix multiplication plus bias
(equals affine transform)

• Combination of:
– Convolution within the image plane, image topology
– Classical all to all “perpendicularly” to the image plane, no topology

• If image size and filter size = 1: fully connected “all to all”

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 74

Resolution changes and side effects

• Side (border) effect:
– crop the output “image” relative to the input one and/or
– pad the image if the filter expand outside

• Resolution change (generally reduction):
– Stride: subsample, e.g. compute only one out of N, and/or
– Pool: compute all and apply an associative operator to compute

a single value for the low resolution location from the high
resolution ones, e.g.:

• Common pooling operators: maximum or average

• Pooling correspond to a separate back-propagation
module (as for the linear and non-linear parts of a layer)

𝑂(𝑘, 𝑖, 𝑗) = op(𝐼(𝑘, 2𝑖, 2𝑗), 𝐼(𝑘, 2𝑖 + 1,2𝑗), 𝐼(𝑘, 2𝑖, 2𝑗 + 1), 𝐼(𝑘, 2𝑖 + 1,2𝑗 + 1))

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 75

Pytorch tutorial network (LeNet, 1998)

(Grayscale image)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 76

Pytorch tutorial network

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 77

Pytorch tutorial network (color image)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 78

AlexNet (ImageNet Challenge 2012)
[Krizhevsky et al., 2012]
• 7 hidden layers, 650K units, 60M parameters (W)
• GPU implementation (50× speed-up over CPU)
• Trained on two GTX580-3GB GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 79

AlexNet “conv5” example

• Number of units (“neurons”) in a layer (= size of the output tensor):
output image width (13) × output image height (13) × number of
output planes (256) = 43,264

• Number of weights in a layer (= number of weights in a layer):
number of input planes (384) × number of output planes (256) ×
filter width (3) × filter height (3) = 884,736 (884,992 including biases)

• Number of connections: number of grid locations × number of
weights in a unit set (excluding biases) = 149,520,384

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 80

Yann LeCun recommendations
• Use ReLU non-linearities (tanh and logistic are falling out of favor)
• Use cross-entropy loss for classification
• Use Stochastic Gradient Descent on minibatches
• Shuffle the training samples
• Normalize the input variables (zero mean, unit variance)
• Schedule to decrease the learning rate
• Use a bit of L1 or L2 regularization on the weights (or a combination)

– But it's best to turn it on after a couple of epochs
• Use “dropout” for regularization

– Hinton et al 2012 http://arxiv.org/abs/1207.0580
• Lots more in [LeCun et al. “Efficient Backprop” 1998]
• Lots, lots more in “Neural Networks, Tricks of the Trade” (2012

edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Patrick Loiseau Intro NN/DL MOSIG 1 March 2020 81

Recent trends and other topics

• VGG and GoogLeNet (16-19 and 22 layers)
• Residual networks (152 layers with “shortcuts”)
• Stochastic depth networks (up to 1202 layers)
• Weakly supervised / unsupervised learning
• GANs / VAEs
• Transfer learning
• Recurrent networks (time series)
• Transformers (NLP)

