Introduction to Neural Networks and Deep Learning

Patrick Loiseau

(based on slides from Georges Quénot)

Reference

- Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep learning. MIT Press, 2016
	- In part. Chap 6 and 9
	- https://www.deeplearningbook.org/

Content

- Introduction
- Machine learning reminders
- Multilayer perceptron
- Back-propagation
- Convolutional neural networks (images)

INTRODUCTION

ImageNet Classification 2012 Results

Krizhevsky et al. – **16.4% error** (top-5) Next best (Pyr. FV on dense SIFT) – **26.2% error**

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- 1000 visual "fine grain" categories / labels (exclusive)
- 150,000 test images (hidden "ground truth")
- 50,000 validation images
- 1,200,000 training images
- Each training, validation or test image falls within exactly one of the 1000 categories
- Task: for each image in the test set, rank the categories from most probable to least probable
- Metric: top-5 error rate: percentage of images for which the actual category is not in the five first ranked categories
- Held from 2010 to 2015, frozen since 2012

ImageNet Classification 2013 Results

http://www.image-net.org/challenges/LSVRC/2013/results.php Demo: http://www.clarifai.com/

Going deeper and deeper

For comparison, human performance is 5.1% (Russakovsky et al.)

Deep Convolutional Neural Networks

- Decades of algorithmic improvements in neural networks (Stochastic Gradient Descent, initialization, momentum …)
- Very large amounts of properly annotated data (ImageNet)
- Huge computing power (Teraflops × weeks): GPU!
- Convolutional networks
- Deep networks (>> 3 layers)
- ReLU (Rectified Linear Unit) activation functions
- Batch normalization
- Drop Out
- …

Deep Learning is (now) EASY

- Maths: linear algebra and differential calculus (training only)
	- $-Y = A.X + B$ (with tensor extension)
	- $f(x+h) = f(x) + f'(x) \cdot h + o(h)$ (with multidimensional variables)
	- $-g(g \circ f)'(x) = (g' \circ f)(x) \cdot f'(x)$ (recursively applied)
- Tools: amazingly integrated, effective and easy to use packages
	- Mostly python interface
	- Autograd packages: only need to care of the linear algebra part
	- Main: PyTorch, TensorFlow

MACHINE LEARNING REMINDERS

Learning a target function

• Target function: $f: X \rightarrow Y$

 $x \rightarrow y = f(x)$

- *x* : input object, e.g., color image
- *y* : desired output, e.g., class label or image tag
- *X* : set of valid input objects
- *Y* : set of possible output values

$$
f\left(\frac{1}{\sqrt{2}}\right) = \text{``cat''}
$$
\n
$$
f\left(\frac{1}{\sqrt{2}}\right) = \text{``dog''}
$$
\n
$$
f\left(\frac{1}{\sqrt{2}}\right) = \text{``car''}
$$

Set of possible color images:

$$
X = \bigcup_{(w,h)\in\mathbb{N}^{*2}} [0,1]^{w\times h\times 3}
$$

Set of possible image tags:

$$
Y = \{``cat", "dog", ...\}
$$

Learning a target function

• Target function: $f: X \rightarrow Y$ $x \rightarrow y = f(x)$

– *x* : input object, e.g., color image

- *y* : desired output, e.g., class label or image tag
- *X* : set of valid input objects
- *Y* : set of possible output values

Set of possible color images:

$$
X = \bigcup_{(w,h)\in\mathbb{N}^{*2}} [0,1]^{w\times h\times 3}
$$

Set of possible tag scores:

$$
Y = \mathbb{R}^{\left|\{\text{``cat",\text{``dog''}}...\text{''}\right\|}} = \mathbb{R}^c
$$

Learning a target function

• Target function: $f: X \rightarrow Y$ $x \rightarrow y = f(x)$

– *x* : input object, e.g., image descriptor

- *y* : desired output, e.g., class label or image tag
- *X* : set of valid input objects
- *Y* : set of possible output values

Set of possible image descriptors:

 $X = \mathbb{R}^d$ (or subset of it)

Set of possible tag scores:

 $Y = \mathbb{R}^c$

 D is a predefined and fixed function $f\left(\begin{array}{ccc}D\end{array}\right) = \begin{pmatrix}0.03\0.86\end{pmatrix}$ from $\left[\begin{array}{ccc} \end{array}\right] \left[\begin{array}{ccc}0.1\end{array}\right]^{w\times h\times 3}$ to \mathbb{R}^d $w\times h\times 3$ $(w.h) \in \mathbb{N}^{*2}$

Supervised learning

• Target function: $f: X \to Y$

 $x \rightarrow y = f(x)$

- *x* : input object (typically vector)
- *y* : desired output (continuous value or class label)
- *X* : set of valid input objects
- *Y* : set of possible output values
- Training data: $S = (x_i, y_i)_{(1 \le i \le I)}$
	- *I* : number of training samples
- Learning algorithm: $L:(X\times Y)^*\to Y^X$ $S \rightarrow f = L(S)$
- Regression or classification system:

 $y = f(x) = [L(S)](x) = g(S, x)$

Parametric supervised learning

- Parameterized function: $f: \mathbb{R}^m \to Y^X$ $\theta \rightarrow f_{\theta}$
- f is a "meta" function or a family of function
- Target function: $f_{\theta}: X \rightarrow Y$ $x \rightarrow y = f_{\theta}(x)$
	- X : set of valid input objects (\mathbb{R}^d)
	- Y : set of possible output values (\mathbb{R}^c)
- Training data: $S = (x_i, y_i)_{(1 \le i \le I)}$
	- *I* : number of training samples
- Learning algorithm: $L_f : (X \times Y)^* \to \mathbb{R}^m$ (learns θ from *S*) $S \rightarrow \theta = L_f(S)$
- Regression or classification system: $y = f_{\theta}(x) = f(\theta, x)$

Single-label loss function

- Quantifies the cost of classification error or the "empirical risk"
- Example (Mean Square Error): $E_S(f) = \sum_{i=1}^{i=1} (f(x_i) y_i)^2$
- If f depends on a parameter vector θ (*L* learns θ): $E_S(\theta) =$ $\frac{1}{2}\sum_{i=1}^{i=I}(f(\theta, x_i) - y_i)^2$
- For a linear SVM with soft margin, $\theta = (w, b)$: $E_S(\theta) =$ $\mathbf{1}$ $\frac{1}{2} ||w||^2 + C \cdot \sum_{i=1}^{i=1} \max(0, 1 - y_i(w^T x_i + b))$
- The learning algorithm aims at minimizing the empirical risk: $\theta^* = \argmin E_S(\theta)$ Θ

MULTILAYER PERCEPTRON

Formal neural or unit (two sub-units)

$$
y = \sum_j w_j x_j = w \cdot x
$$

 $x:$ column vector $x:$ column vector $y, b, z:$ scalars $y, b, z:$

linear and vector part non-linear and scalar part

$$
z = \sigma(y + b) = \frac{1}{1 + e^{y + b}}
$$

linear combination ex: sigmoid function

Formal neural or unit (two sub-units)

linear and vector part non-linear and scalar part

$$
y = \sum_j w_j x_j = w \cdot x
$$

1

$$
z = \sigma(y + b) = \frac{1}{1 + e^{y + b}}
$$

linear combination

ex: sigmoid function

Globally equivalent to a logistic regression

Neural layer (all to all, two sub-layers)

$$
y_i = \sum_j w_{ij} x_j
$$

 $z_i = \sigma(y_i + b_i) =$ 1 $1 + e^{y_i + b_i}$

matrix-vector multiplication per component operation

$$
Y = W.X
$$

 $z = \sigma(Y + B)$

Multilayer perceptron (all to all)

Multilayer perceptron (all to all)

 $Y_1 = W_1$, $X_0 = F_1(W_1, X_0)$ $X_1 = \sigma(Y_1 + B_1) = G_1(B_1, Y_1)$ $Y_2 = W_2$, $X_1 = F_2(W_2, X_1)$ $X_2 = \sigma(Y_2 + B_2) = G_2(B_2, Y_2)$ $Y_3 = W_3$, $X_3 = F_3(W_3, X_2)$ $X_3 = \sigma(Y_3 + B_3) = G_3(B_3, Y_3)$ $O = X_3 = G_3\left(B_3, F_3\left(W_3, G_2\left(B_2, F_2\left(W_2, G_1\left(B_1, F_1(W_1, X_0 = I)\right)\right)\right)\right)\right)$

Denoting $F(W)$ so that $F(W, X) = (F(W))(X)$:

 $O = (G_3(B_3) \circ F_3(W_3) \circ G_2(B_2) \circ F_2(W_2) \circ G_1(B_1) \circ F_1(W_1))$

Composition of simple functions

Splitting units and layers, renaming and renumbering:

 $O = (F_6(W_6) \circ F_5(W_5) \circ F_4(W_4) \circ F_3(W_3) \circ F_2(W_2) \circ F_1(W_1))(I) = (o_{n=1}^{n=6} F_n(W_n))(I)$

Non-linear functions

- Sigmoid: $z =$ 1 $1+e^y$
- Hyperbolic tangent: $z = \tanh y$
- Rectified Linear Unit (ReLU): $z = max(0, y)$
- Programmable ReLU (PReLU) : $z = max(\alpha y, y)$ with α learned (i.e. $\alpha \subset W$)

- Appropriate non-linear functions leads to better performance and/or faster convergence
- Avoid vanishing / exploding gradients

• …

Composition of simple functions

Composition of simple functions

- Model parameters: $\theta = (a_0, a_1, b_1, a_2, b_2, \dots)$
- Empirical risk on training data: $E(\theta) = \sum_i (y_i f_{\theta}(x_i))^2$
- Find the optimal function by gradient descent on θ
- Any function can do: sigmoids, gaussians, sin/cos ...
- ReLU is simpler and converges faster
- More layers: more complex functions with less parameters

Feed Forward Network

- Global network definition: $O = F(W, I)$ $(I \equiv x \ O \equiv y \ F \equiv f \ W \equiv \theta$ relative to previous notations)
- Layer values: $(X_0, X_1 ... X_N)$ with $X_0 = I$ and $X_N = O$ $(X_n$ are vectors)
- Global vector of all unit parameters: $W = (W_1, W_2, \dots, W_N)$ (weights by layer are concatenated, W_n can be matrices or vectors or any parameter structure, and even possibly empty)
- Feed forward: $X_{n+1} = F_{n+1}(W_{n+1}, X_n)$
- Possibly "joins" and "forks" (but no cycles)

Example: the XOR function

- XOR is not linearly separable
	- Single layer with one hidden unit \rightarrow no
	- Without any non-linearity \rightarrow no
	- One hidden layer with 2 hidden units and ReLU \rightarrow yes

Learning Algorithm

- Training set: $S = (I_i, O_i)_{(1 \le i \le I)}$ input-output samples
- $X_{i,0} = I_i$ and $X_{i,n+1} = F_{n+1}(W_{n+1}, X_{i,n})$
- Note: regarding this notation the vector-matrix multiplication counts as one layer and the element-wise non-linearity counts as another one (not mandatory but greatly simplifies the layer modules' implementation)
- Error (empirical risk) on the training set: $E_S(W) = \sum_i (F(W, I_i) - O_i)^2 = \sum_i (X_{i,N} - O_i)$ \overline{c} \dot{l}
- Minimization on W of $E_S(W)$ by gradient descent

Gradient descent

Stochastic gradient descent and batch processing

- $E_S(W) = \sum_i (F(W, I_i) O_i)^2 = \sum_i E_i(W)$
- $W(t + 1) = W(t) \eta(t) \frac{\partial E}{\partial W}(t) = W(t) \sum_i \eta(t) \frac{\partial E_i}{\partial W}(t)$
- Global update (epoch): sum of per sample updates
- Classical GD: update W globally after all I samples have been processed $(1 \le i \le I)$
- Stochastic GD: update W after each processed sample \rightarrow immediate effect, faster convergence
- Batch: update W after a given number (typically between 32 and 256) of processed samples \rightarrow parallelism

Learning rate evolution

•
$$
W(t+1) = W(t) - \eta(t) \frac{\partial E}{\partial W}(W(t))
$$

- Large learning rate: instability
- Small learning rate: slow convergence
- Variable learning rate: learning rate decay policy
- Most often: step strategy: iterate "constant during a number of epochs, then divide by a given factor"
- Possibly different learning rates for different layers or for different types of parameters, generally with common evolution

Gradient descent in practice

- Cost functions are not convex
- Sometimes not differentiable (ReLU)
- Only at a small number of points CHAPTER 4. NUMERICAL COMPUTATION
	- Works well in practice

Architecture design

- Universal approximation theorem
	- a feed-forward network with a single hidden layer containing a finite but sufficient number of neurons can approximate (arbitrarily well) any continuous functions on compact subsets of $Rⁿ$, under mild assumptions on the activation function (e.g., sigmoid).
- But…
	- Optimization algorithm might fail + overfitting
- Empirically, deeper networks generalize better

 \rightarrow Ideal network architecture via experimentation guided by monitoring the validation error
BACKPROPAGATION

Error back-propagation

- Minimization of $E_{\rm S}(W)$ by gradient descent:
	- The gradient indicate an ascending direction: move in the opposite
	- Randomly initialize $W(0)$

- Iterate $W(t + 1) = W(t) - \eta \frac{\partial E}{\partial W}(W(t)) \quad \eta = f(t)$ or $\partial^2 E$ $\frac{\partial E}{\partial W^2}(W(t$ -1

$$
-\frac{\partial E}{\partial W} = \left(\frac{\partial E}{\partial W_1}, \frac{\partial E}{\partial W_2}, \dots, \frac{\partial E}{\partial W_N}\right) \qquad (W = (W_1, W_2, \dots, W_N))
$$

– Back-propagation: $\frac{\partial E}{\partial M}$ ∂W_n is computed by backward recurrence from

 ∂F_n ∂W_n and $\frac{\partial F_n}{\partial x}$ ∂X_{n-1} applying iteratively $(g \circ f)' = (g' \circ f) \cdot f'$

– Two derivatives, relative to weight and to data to be considered

Error back-propagation (adapted from Yann LeCun)

Forward pass, for $1 \le n \le N$: $X_n = F_n (W_n, X_{n-1})$ $E = C(X_N, 0)$

We need gradients with respect to X_n . For $n = N$:

Then backward recurrence:

Gradients with respect to W_n . For $1 \leq n \leq N$:

$$
\frac{\partial E}{\partial W_n} = \frac{\partial E}{\partial X_n} \frac{\partial F_n(W_n, X_{n-1})}{\partial W_n}
$$

Error back-propagation 0: Prediction mode

Forward pass

Forward pass, for $1 \le n \le N$: $X_n = F_n (W_n, X_{n-1})$

Error back-propagation 1: loss function

Forward pass, for $1 \le n \le N$: $X_n = F_n (W_n, X_{n-1})$

Loss function (for one sample): $E = C(X_N, 0)$ $E(W, I, O) = C(F(W, I), O)$

Sum over the whole training set or over a batch of samples:

 $E(W) = \sum E(W, I_i, O_i)$ $\dot{\iota}$

Same W, different (I_i, O_i)

Update: $W = W - \eta$ $\partial E(W)$ ∂W

Error back-propagation 2: Data backward pass

Forward pass, for $1 \le n \le N$: $X_n = F_n (W_n, X_{n-1})$ $E = C(X_N, 0)$

We need gradients with respect to X_n . For $n = N$:

Then backward recurrence:

Error back-propagation 3: Parameter backward pass

Forward pass, for $1 \le n \le N$: $X_n = F_n (W_n, X_{n-1})$ $E = C(X_N, 0)$

We need gradients with respect to X_n . For N:

 ∂E $\partial C(X_N, O)$ ∂X_N = ∂X_N

Then backward recurrence:

Gradients with respect to W_n . For $1 \leq n \leq N$:

$$
\frac{\partial E}{\partial W_n} = \frac{\partial E}{\partial X_n} \frac{\partial F_n(W_n, X_{n-1})}{\partial W_n}
$$

Error back-propagation 4: Accumulate and update

…

Forward pass, for $1 \le n \le N$: $X_n = F_n (W_n, X_{n-1})$ $E = C(X_N, 0)$

Gradients with respect to W_n . For $1 \leq n \leq N$:

$$
\frac{\partial E}{\partial W_n} = \frac{\partial E}{\partial X_n} \frac{\partial F_n(W_n, X_{n-1})}{\partial W_n}
$$

Accumulate gradients and update parameters. For $1 \leq n \leq N$:

$$
W_n = W_n - \eta \sum_i \frac{\partial E}{\partial W_n}(W, I_i, O_i)
$$

Usually on batches

Error back-propagation: simplified notations

Forward pass, for $1 \le n \le N$: $X_n = F_n (W_n, X_{n-1})$ $E = C(X_N, 0)$

We need gradients with respect to X_n . For $n = N$:

 ∂E ∂C ∂X_N = ∂X_N

Then backward recurrence:

 ∂E ∂X_{n-1} = ∂E ∂X_n ∂X_n ∂X_{n-1}

Gradients with respect to W_n . For $1 \leq n \leq N$:

$$
\frac{\partial E}{\partial W_n} = \frac{\partial E}{\partial X_n} \frac{\partial X_n}{\partial W_n}
$$

Layer module (adapted from Yann LeCun)

Notes: $X_{in} \equiv X_{n-1}$, $X_{out} \equiv X_n$, $W \equiv W_n$ and $F \equiv F_n$ for $1 \le n \le N$

Layer module (adapted from Yann LeCun)

Layer module (adapted from Yann LeCun)

Gradient back-propagation rule:

The gradient relative to the input (either W or X_{in}) is equal to the gradient relative to the output (X_{out}) times the Jacobian of the transfer function (respectively $\frac{\partial X_{out}}{\partial M}$ ∂W or ∂X_{out} ∂X_{in} , left vector multiplication)

$$
\frac{\partial F(W, X_{in})}{\partial X_{in}} \equiv \frac{\partial X_{out}}{\partial X_{in}} \qquad \qquad \frac{\partial E}{\partial X_{in}} = \frac{\partial E}{\partial X_{out}} \frac{\partial X_{out}}{\partial X_{in}}
$$

$$
\frac{\partial F(W, X_{in})}{\partial W} \equiv \frac{\partial X_{out}}{\partial W} \qquad \qquad \frac{\partial E}{\partial W} = \frac{\partial E}{\partial X_{out}} \frac{\partial X_{out}}{\partial W}
$$

Autograd variable (PyTorch)

data : X (may be X_{in} , W or X_{out}) grad : $\frac{\partial E}{\partial x}$ ∂X E : where backward() was called from grad fn : $F | X = F(...)$ "None" for W or for inputs

Autograd variable (PyTorch)

 F_n contains both the data forward function ∂E ∂X_{n-1} = ∂E ∂X_n × $\partial F(W, X_{n-1})$ ∂X_{n-1} ∂E ∂W_n = ∂E ∂X_n × $\partial F(W_n, X_{n-1})$ ∂W_n $X_n = F(W_n, X_{n-1})$ and the gradient backward function(s)

 X_0 is an input, not produced by any function: grad fn = Null for X_0

Autograd variable (PyTorch)

 $\mathcal C$ contains both the data forward function

$E = C(X_N, O)$

and the gradient backward function(s)

Autograd backward()

Define $X_n = F_n(W_n, X_{n-1})$ for $1 \le n \le N$ (or arbitrary network) End with $E = C(X_N, 0)$ Execute a forward pass for a training sample (I, O) Call E.backward() (backward pass from E with $\partial E/\partial E=1$) Get all $\partial E / \partial W$ _n (and $\partial E / \partial X$ _n) for that training sample

Autograd Variable and function

Input may be multiple (X_i, W) Autograd does not care about input types

Linear module (adapted from Yann LeCun)

Note: X_{in} and X_{out} are regular (column) vectors and W is a matrix while $\partial E/\partial X_{in}$ and $\partial E/\partial X_{out}$ are transpose (row) vectors (this is because $dE = (\partial E/\partial X) dX$). $\partial E/\partial W$ is a transposed matrix which is the *outer* product of the regular and transpose vectors X_{in} and $\partial E/\partial X_{out}$.

Pointwise module (adapted from Yann LeCun)

Notes: B is a bias vector on the input. X_{in} , X_{out} and B are regular (column) vectors all of the same size while $\partial E/\partial X_{in}$ and $\partial E/\partial X_{out}$ and $\partial E/\partial B$ are transpose vectors also of the same size. *f* is a scalar function applied pointwise on $X_{in} + B$. *f'* is the derivative of f and is also applied pointwise. The multiplication by $(f'(X_{in} + B))^T$ is also performed pointwise (Hadamard product denoted "o" here).

Neural Networks training in practice

- Good news is that autograd automatically and transparently takes care of gradients computation and propagation; you just have to call .backward()
- You only have to define the forward network sequence
- You still have to select various hyper-parameters and to organize:
	- iterations
	- batch processing
	- learning rate schedule
	- possibly data augmentation

Dropout

- Regularization technique
- During training, at each epoch, neutralize a given (typically 0.2 to 0.5) proportion of randomly selected connections
- During prediction, keep all of them with a multiplicative compensating factor
- Avoid concentration of the activation on particular connections
- Much more robust operation
- Faster training, better performance

Softmax

• Normalization of output as probabilities (positive values summing to 1) for the multiclass problem (i.e. target categories are mutually exclusive)

•
$$
z_i = \frac{e^{y_i}}{\sum_j e^{y_j}}
$$

- Not suited for the multi-label case (i.e., target categories are not mutually exclusive)
- Associated loss function is cross-entropy

Cross-entropy loss (multi-class)

- p_i : probability vector for class i
- l_i : truth value for class i ("one hot encoding")
- $L = \sum_i -(l_i \log p_i)$
- For exclusive classes, l_i is equal to 1 only for the right class i_0 and to 0 otherwise:
- $L = -\log p_{i_0}$ (log 1 = 0 and log 0 = $-\infty$)
- Forces p_{i_0} to be close to 1, very high loss value if p_{i_0} is close to $0 \rightarrow$ faster convergence
- Other p_i indirectly forced to be close to 0 because the p_i s sums to 1
- With softmax: forces y_{i_0} to be greater than the other y_i s

CONVOLUTIONAL NEURAL NETWORKS (CNN)

Classical Image classification

Plus: multiple features, early or late fusion, re-scoring …

Classical Image classification

Still classical since 3-layer MLPs are at least 30 years old

Deep "end-to-end" Image classification

• Fuzzy boundary between feature extraction and classification even if there is a transition between convolutional and fully connected layers

- *End-to-end learning*: features (descriptors) themselves are learned (by gradient descent) too, not engineered
- Possible only via the use of *convolutional* layers

Convolutional layers (2D grid case)

- Alternative to the "all to all"(vector to vector) connections
- Preserves the 2D image topology via "feature maps"
- X_n are 3D data ("tensors") instead of vectors
- 2 of the dimensions are aligned with the image grid
- The third dimension is a set of values associated to a grid location (gathered in a vector per location but without associated topology)
- Each component in the third dimension correspond to a "map" aligned with the image grid
- Each data tensor is a "stack" of features maps
- Translation-invariant (relatively to the grid) processing

3D tensor data (2D grid case)

Input image data is a special case with 3 feature maps corresponding to the RGB planes and sometimes 4 or even more for RGB-D or for hyper-spectral (satellite) image data.

Convolutional layers (2D grid case)

- Each map point is connected to all maps points of a fixed size neighborhood in the previous layer
- Weights between maps are shared so that they are invariant by translation in the image plane

Convolutional layers (2D grid case)

- Combination of:
	- –convolutions within the image plane
	- –"all to all" within the map dimension
- Separable or non-separable combinations
- Resolution changes across layers: stride and pooling
- Examples: LeNet (1998) and AlexNet (2012)

- Classical image convolution (2D to 2D): $O(i, j) = (K * I)(i, j) = \sum_{i=1}^{n} K(m, n)I(i - m, j - n)$ (m,n)
- Convolutional layer (3D to 3D):
- *m* and *n* : within a window around the current location, corresponding to the filter size
- $K(m, n)$: convolution kernel
- Example: (circular) Gabor filter:

$$
K(m, n) = \frac{1}{2\pi\sigma^2} \cdot e^{-\frac{m^2 + n^2}{2\sigma^2}} \cdot e^{2\pi i \frac{m \cdot \cos \theta + n \cdot \sin \theta}{\lambda}}
$$

3x3 convolution, half padding

Animation from https://github.com/vdumoulin/conv_arithmetic/

3×3 convolution, no padding

Animation from https://github.com/vdumoulin/conv_arithmetic/

3×3 convolution, full padding

Animation from https://github.com/vdumoulin/conv_arithmetic/

Convolutional layers

- Convolutional layer: multiple maps (planes) both in input and output (3D to 3D, plus bias): $O(l, i, j) = B(l) + \sum K(k, l, m, n)I(k, i - m, j - n)$ (k,m,n)
- *k* and *l*: indices of the feature maps in the input and output layers
- *m* and *n*: within a window around the current location, corresponding to the feature size
Convolutional layers

• Convolutional layer: multiple maps (planes) both in input and output (3D to 3D, plus bias): $\sqrt{ }$

$$
O(l, i, j) = B(l) + \sum_{(k,m,n)} K(l, k, m, n)I(k, i - m, j - n)
$$

- Operation relative to (m, n) : convolution
- Operation relative to (k, l) : matrix multiplication plus bias (equals affine transform)
- Combination of:
	- Convolution within the image plane, image topology
	- Classical all to all "perpendicularly" to the image plane, no topology
- If image size and filter size = 1: fully connected "all to all"

Resolution changes and side effects

- Side (border) effect:
	- crop the output "image" relative to the input one and/or
	- pad the image if the filter expand outside
- Resolution change (generally reduction):
	- Stride: subsample, e.g. compute only one out of N, and/or
	- Pool: compute all and apply an associative operator to compute a single value for the low resolution location from the high resolution ones, e.g.:

 $O(k, i, j) = op(I(k, 2i, 2j), I(k, 2i + 1,2j), I(k, 2i, 2j + 1), I(k, 2i + 1,2j + 1))$

- Common pooling operators: maximum or average
- Pooling correspond to a separate back-propagation module (as for the linear and non-linear parts of a layer)

Pytorch tutorial network (LeNet, 1998)

(Grayscale image)

Pytorch tutorial network

class Net(nn. Module):

```
def init (self):super(Net, self), init ()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.comv1 = nn.Conv2d(1, 6, 5)self.conv2 = nn.Cony2d(6, 16, 5)# an affine operation: y = Wx + bself.fc1 = nn.Linear(16 \star 5 \star 5, 120)
self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):
# Max pooling over a (2, 2) window
x = F \cdot max \text{pool2d}(F \cdot \text{relu}(\text{self} \cdot \text{conv1}(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max\_pool2d(F.read(self.conv2(x)), 2)x = x \cdotview(-1, self.num flat features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = \text{self.fc3}(x)return x
```
Pytorch tutorial network (color image)

```
class Net(nn.Module):
def init (self):super(Net, self), init()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.cony2 = nn.Cony2d(6, 16, 5)self.fc1 = nn.Linear(16 \star 5 \star 5, 120)
    self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)
```

```
def forward(self, x):
 x = \text{self.pool}(F.\text{relu}(\text{self.com}(x)))x = \text{self.pool}(F.\text{relu}(\text{self.com}2(x)))x = x \cdotview(-1, 16 \star 5 \star 5)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = \text{self.fc3}(x)return x
```
AlexNet (ImageNet Challenge 2012)

[Krizhevsky et al., 2012]

- 7 hidden layers, 650K units, 60M parameters (W)
- GPU implementation (50× speed-up over CPU)
- Trained on two GTX580-3GB GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

AlexNet "conv5" example

- Number of units ("neurons") in a layer (= size of the output tensor): output image width (13) \times output image height (13) \times number of output planes (256) = 43,264
- Number of weights in a layer (= number of weights in a layer): number of input planes (384) \times number of output planes (256) \times filter width (3) \times filter height (3) = 884,736 (884,992 including biases)
- Number of connections: number of grid locations \times number of weights in a unit set (excluding biases) = 149,520,384

Yann LeCun recommendations

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination) – But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
	- Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Recent trends and other topics

- VGG and GoogLeNet (16-19 and 22 layers)
- Residual networks (152 layers with "shortcuts")
- Stochastic depth networks (up to 1202 layers)
- Weakly supervised / unsupervised learning
- GANs / VAEs
- Transfer learning
- Recurrent networks (time series)
- Transformers (NLP)